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FOREWORD

This volume is the next in a sequence of AAS/AIAA Astrodynamics Specialist Confer-
ence volumes which are published as a part of Advances in the Astronautical Sciences. Sev-
eral other sequences or subseries have been established in this series. Among them are:
Spaceflight Mechanics (published for the AAS annually, but recently changed to every sec-
ond odd number year), Guidance and Control (annual), International Space Conferences of
Pacific-basin Societies (ISCOPS, formerly PISSTA), and AAS Annual Conference proceed-
ings. Proceedings volumes for earlier conferences are still available either in hard copy, digi-
tal, or in microfiche form. The appendix of the volume lists proceedings available through
the American Astronautical Society.

Astrodynamics 2017, Volume 162, Advances in the Astronautical Sciences, consists of
four parts totaling about 4,064 pages, plus a CD ROM/digital format version which also
contains all the available papers. Papers which were not available for publication are listed
on the divider pages of each section. A chronological index and an author index appear at
the end of the main linking file, and are appended to the fourth part of the volume.

In our proceedings volumes the technical accuracy and editorial quality are essentially
the responsibility of the authors. The session chairs and our editors do not review all papers
in detail; however, format and layout are improved when necessary by the publisher.

We commend the general chairs, technical chairs, session chairs and the other partici-
pants for their role in making the conference such a success. We would also like to thank
those who assisted in organizational planning, registration and numerous other functions re-
quired for a successful conference.

The current proceedings are valuable to keep specialists abreast of the state of the art;
however, even older volumes contain some articles that have become classics and all vol-
umes have archival value. This current material should be a boon to aerospace specialists.

AAS/AIAA ASTRODYNAMICS VOLUMES

Astrodynamics 2017 appears as Volume 162, Advances in the Astronautical Sciences.
This publication presents the complete proceedings of the AAS/AIAA Astrodynamics Spe-
cialist Conference 2017.

Astrodynamics 2015, Volume 156, Advances in the Astronautical Sciences, Eds. M. Majji et
al., 4512p, three parts plus a CD ROM Supplement.

Astrodynamics 2013, Volume 150, Advances in the Astronautical Sciences, Eds. S.B.
Broschart et al., 3532p, three parts plus a CD ROM Supplement.

Astrodynamics 2011, Volume 142, Advances in the Astronautical Sciences, Eds. H. Schaub
et al., 3916p, four parts plus a CD ROM Supplement.

Astrodynamics 2009, Volume 135, Advances in the Astronautical Sciences, Eds. A.V. Rao
et al., 2446p, three parts plus a CD ROM Supplement.

5



Astrodynamics 2007, Volume 129, Advances in the Astronautical Sciences, Eds. R.J.
Proulx et al., 2892p, three parts plus a CD ROM Supplement.

Astrodynamics 2005, Volume 123, Advances in the Astronautical Sciences, Eds. B.G.
Williams et al., 2878p, three parts plus a CD ROM Supplement.

Astrodynamics 2003, Volume 116, Advances in the Astronautical Sciences, Eds. J. de
Lafontaine et al., 2746p, three parts plus a CD ROM Supplement.

Astrodynamics 2001, Volume 109, Advances in the Astronautical Sciences, Eds. D.B.
Spencer et al., 2592p, three parts.

Astrodynamics 1999, Volume 103, Advances in the Astronautical Sciences, Eds. K.C.
Howell et al., 2724p, three parts.

Astrodynamics 1997, Volume 97, Advances in the Astronautical Sciences, Eds. F.R. Hoots
et al., 2190p, two parts.

Astrodynamics 1995, Volume 90, Advances in the Astronautical Sciences, Eds. K.T.
Alfriend et al., 2270p, two parts; Microfiche Suppl., 6 papers (Vol. 72 AAS Microfiche Series).

Astrodynamics 1993, Volume 85, Advances in the Astronautical Sciences, Eds. A.K. Misra
et al., 2750p, three parts; Microfiche Suppl., 9 papers (Vol. 70 AAS Microfiche Series)

Astrodynamics 1991, Volume 76, Advances in the Astronautical Sciences, Eds. B. Kaufman
et al., 2590p, three parts; Microfiche Suppl., 29 papers (Vol. 63 AAS Microfiche Series)

Astrodynamics 1989, Volume 71, Advances in the Astronautical Sciences, Eds. C.L.
Thornton et al., 1462p, two parts; Microfiche Suppl., 25 papers (Vol. 59 AAS Microfiche
Series)

Astrodynamics 1987, Volume 65, Advances in the Astronautical Sciences, Eds. J.K.
Soldner et al., 1774p, two parts; Microfiche Suppl., 48 papers (Vol. 55 AAS Microfiche
Series)

Astrodynamics 1985, Volume 58, Advances in the Astronautical Sciences, Eds. B. Kaufman
et al., 1556p, two parts; Microfiche Suppl. 55 papers (Vol. 51 AAS Microfiche Series)

Astrodynamics 1983, Volume 54, Advances in the Astronautical Sciences, Eds. G.T. Tseng
et al., 1370p, two parts; Microfiche Suppl., 41 papers (Vol. 45 AAS Microfiche Series)

Astrodynamics 1981, Volume 46, Advances in the Astronautical Sciences, Eds. A.L.
Friedlander et al., 1124p, two parts; Microfiche Suppl., 41 papers (Vol. 37 AAS Microfiche
Series)

Astrodynamics 1979, Volume 40, Advances in the Astronautical Sciences, Eds. P.A. Penzo
et al., 996p, two parts; Microfiche Suppl., 27 papers (Vol. 32 AAS Microfiche Series)

Astrodynamics 1977, Volume 27, AAS Microfiche Series, 73 papers
Astrodynamics 1975, Volume 33, Advances in the Astronautical Sciences, Eds., W.F.
Powers et al., 390p; Microfiche Suppl., 59 papers (Vol. 26 AAS Microfiche Series)

Astrodynamics 1973, Volume 21, AAS Microfiche Series, 44 papers

Astrodynamics 1971, Volume 20, AAS Microfiche Series, 91 papers

AAS/AIAA SPACEFLIGHT MECHANICS VOLUMES
Spaceflight Mechanics 2017, Volume 160, Advances in the Astronautical Sciences, Eds.
J.W. McMahon et al., 4290p., four parts, plus a CD ROM supplement.

Spaceflight Mechanics 2016, Volume 158, Advances in the Astronautical Sciences, Eds.
R. Zanetti et al., 4796p., four parts, plus a CD ROM supplement.

Spaceflight Mechanics 2015, Volume 155, Advances in the Astronautical Sciences, Eds.
R. Furfaro et al., 3626p., three parts, plus a CD ROM supplement.
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Spaceflight Mechanics 2014, Volume 152, Advances in the Astronautical Sciences, Eds.
R.S. Wilson et al., 3848p., four parts, plus a CD ROM supplement.

Spaceflight Mechanics 2013, Volume 148, Advances in the Astronautical Sciences, Eds.
S. Tanygin et al., 4176p., four parts, plus a CD ROM supplement.

Spaceflight Mechanics 2012, Volume 143, Advances in the Astronautical Sciences, Eds.
J.V. McAdams et al., 2612p., three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2011, Volume 140, Advances in the Astronautical Sciences, Eds.
M.K. Jah et al., 2622p., three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2010, Volume 136, Advances in the Astronautical Sciences, Eds.
D. Mortari et al., 2652p., three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2009, Volume 134, Advances in the Astronautical Sciences, Eds.
A.M. Segerman et al., 2496p., three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2008, Volume 130, Advances in the Astronautical Sciences, Eds.
J.H. Seago et al., 2190p., two parts, plus a CD ROM supplement.

Spaceflight Mechanics 2007, Volume 127, Advances in the Astronautical Sciences, Eds.
M.R. Akella et al., 2230p., two parts, plus a CD ROM supplement.

Spaceflight Mechanics 2006, Volume 124, Advances in the Astronautical Sciences, Eds.
S.R. Vadali et al., 2282p., two parts, plus a CD ROM supplement.

Spaceflight Mechanics 2005, Volume 120, Advances in the Astronautical Sciences, Eds.
D.A. Vallado et al., 2152p., two parts, plus a CD ROM supplement.

Spaceflight Mechanics 2004, Volume 119, Advances in the Astronautical Sciences, Eds.
S.L. Coffey et al., 3318p., three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2003, Volume 114, Advances in the Astronautical Sciences, Eds.
D.J. Scheeres et al., 2294p, three parts, plus a CD ROM supplement.

Spaceflight Mechanics 2002, Volume 112, Advances in the Astronautical Sciences, Eds.
K.T. Alfriend et al., 1570p, two parts.

Spaceflight Mechanics 2001, Volume 108, Advances in the Astronautical Sciences, Eds.
L.A. D’Amario et al., 2174p, two parts.

Spaceflight Mechanics 2000, Volume 105, Advances in the Astronautical Sciences, Eds.
C.A. Kluever et al., 1704p, two parts.

Spaceflight Mechanics 1999, Volume 102, Advances in the Astronautical Sciences, Eds.
R.H. Bishop et al., 1600p, two parts.

Spaceflight Mechanics 1998, Volume 99, Advances in the Astronautical Sciences, Eds.
J.W. Middour et al., 1638p, two parts; Microfiche Suppl., 2 papers (Vol. 78 AAS Microfiche
Series).

Spaceflight Mechanics 1997, Volume 95, Advances in the Astronautical Sciences, Eds.
K.C. Howell et al., 1178p, two parts.

Spaceflight Mechanics 1996, Volume 93, Advances in the Astronautical Sciences, Eds.
G.E. Powell et al., 1776p, two parts; Microfiche Suppl., 3 papers (Vol. 73 AAS Microfiche
Series).

Spaceflight Mechanics 1995, Volume 89, Advances in the Astronautical Sciences, Eds.
R.J. Proulx et al., 1774p, two parts; Microfiche Suppl., 5 papers (Vol. 71 AAS Microfiche
Series).

Spaceflight Mechanics 1994, Volume 87, Advances in the Astronautical Sciences, Eds.
J.E. Cochran, Jr. et al., 1272p, two parts.
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Spaceflight Mechanics 1993, Volume 82, Advances in the Astronautical Sciences, Eds.
R.G. Melton et al., 1454p, two parts; Microfiche Suppl., 2 papers (Vol. 68 AAS Microfiche
Series).

Spaceflight Mechanics 1992, Volume 79, Advances in the Astronautical Sciences, Eds.
R.E. Diehl et al., 1312p, two parts; Microfiche Suppl., 11 papers (Vol. 65 AAS Microfiche
Series).

Spaceflight Mechanics 1991, Volume 75, Advances in the Astronautical Sciences, Eds.
J.K. Soldner et al., 1353p, two parts; Microfiche Suppl., 15 papers (Vol. 62 AAS Microfiche
Series).

All of these proceedings are available from Univelt, Inc., P.O. Box 28130, San Diego,
California 92198 (Web Site: http://www.univelt.com), publishers for the AAS.

Robert H. Jacobs, Series Editor
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PREFACE

The 2017 Astrodynamics Specialist Conference was held at the Skamania Lodge in
Stevenson, Washington, in the heart of the Columbia Gorge, from August 20–24, 2017. The
meeting was sponsored by the American Astronautical Society (AAS) Space Flight Me-
chanics Committee and co-sponsored by the American Institute of Aeronautics and Astro-
nautics (AIAA) Astrodynamics Technical Committee. Approximately 261 people registered
for the meeting; attendees included engineers, scientists, and mathematicians representing
government agencies, the military services, industry, and academia from the United States
and abroad. 95 students registered, 4 retirees, and 162 professionals.

There were 240 technical papers, including 22 technical posters, presented in 26 ses-
sions on topics related to space-flight mechanics and astrodynamics. There were three spe-
cial sessions with focuses on Outer Planets Exploration, Constrained Global Trajectory Opti-
mization, and Humans Beyond Earth Orbit.

The meeting included the first Student Competition; 7 student teams competed to de-
sign a mission to the asteroid (469219) 2016 HO3: an asteroid that is co-orbiting the Sun
with Earth in a three-body orbit. Special recognition goes out to the University of Colo-
rado’s team, who placed first in the competition; 2nd place went to Purdue University; 3rd
place went to the University of Arizona. Congratulations to all teams.

The meeting attendees had a special opportunity to attend the 2017 total solar eclipse;
a special viewing was organized in Madras, Oregon, including special tours of the Erickson
Collection Museum in Madras. Monday’s activities also included the student competition
presentations, the dedicated poster presentations, and the keynote speaker Dr. Louis
Freidman, speaking on “Political Advocacy for the Planets.”

The meeting included social networking events each evening, in the open air with
views of the Columbia Gorge.

The editors extend their gratitude to the Session Chairs who made this meeting suc-
cessful: Manoranjan Majji, Juan Arrieta, Jon Sims, Rodney Anderson, Roby Wilson, Brian
Gunter, Kyle DeMars, Carolin Frueh, Nitin Arora, Ryan Russell, Angela Bowes, Jay
McMahon, Paul Thompson, Christopher Roscoe, Stefano Casotto, Roberto Furfaro, Jacob
Englander, Jonathan Aziz, Matthew Wilkins, Diane Davis, Renato Zanetti, Sean Wagner, Ja-
cob Darling, Christopher D’Souza, Andrew Sinclair, and Raymond Merrill.
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Our gratitude also goes to Renato Zanetti, Sean Wagner, Roberto Furfaro, Chris Ros-
coe, Robert Jacobs, Kathy Howell, Roby Wilson, David Spencer, James Kirkpatrick, and
Jim Way for the support and assistance. We thank Michelle Forster, who hosted our confer-
ence attendees at the eclipse viewing in Madras at the Erickson Collection Museum; we
thank the museum for the tours and hospitality.

Dr. Jeffrey S. Parker Dr. Nathan J. Strange
Advanced Space NASA Jet Propulsion Laboratory
AAS Technical Chair AAS General Chair

John H. Seago Dr. Daniel J. Scheeres
Analytical Graphics, Inc. (AGI) University of Colorado
AIAA Technical Chair AIAA General Chair
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AAS 17-571 

POINTING JITTER CHARACTERIZATION FOR 
VARIOUS SSL 1300 SPACECRAFT WITH SIMULATIONS 

AND ON-ORBIT MEASUREMENTS 

Byoungsam (Andy) Woo* and Erik A. Hogan† 

Jitter - line of sight instability or high frequency platform oscillation - is one of the criti-
cal performance measures in various pointing sensitive missions, especially high resolu-
tion imaging or optical communication missions.1,2 If the jitter characteristics of the plat-
form, Earth orbiting satellites in this research, is available at an early phase of develop-
ment, the imaging or optical communication payload design can be largely optimized and 
simplified. This paper describes jitter characterization for SSL 1300 series satellites by 
modeling/simulations and on-orbit measurements in various operational modes. The 
measured jitter of various SSL 1300 satellites meets or exceeds various jitter require-
ments for high resolution imaging and optical communications missions.  

[View Full Paper] 
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AAS 17-615 

MODEL PREDICTIVE CONTROL AND MODEL PREDICTIVE  
Q-LEARNING FOR STRUCTURAL VIBRATION CONTROL 

Minh Q. Phan* and Seyed Mahdi B. Azad*  

This paper describes the relationship between Model Predictive Control (MPC) and Q-
Learning, and formulates an algorithm called Model Predictive Q-Learning that inte-
grates the two concepts. As a unifying theme, the paper explains how the Linear Quadrat-
ic Regulator (LQR), MPC, Q-Learning, and Model Predictive Q-Learning solve the same 
structural vibration control problem, and how the Q-Learning approach naturally handles 
both continuous and discrete-action inputs. The relationship between Model Predictive 
Q-Learning and standard Q-Learning is analogous to the relationship between MPC and 
LQR. [View Full Paper] 
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AAS 17-622 

DECENTRALIZED FINITE-TIME ATTITUDE CONTROL FOR 
MULTI-BODY SYSTEM WITH TERMINAL SLIDING MODE 

Jinyue Li* and Jingrui Zhang*  

Terminal sliding mode (TSM) is a finite-time control related design method. TSM con-
troller ensure the system`s trajectories converge to equilibrium in finite time. It also of-
fers higher-accuracy and better anti-disturbance properties. Decentralized control theory 
is originated from large-scale system`s control problem. By separating one system into 
several subsystems, and control the subsystems with several independent controllers, a 
decentralized control is presented. Decentralized control gives system greater efficiency 
and higher robustness. By combing the concept of decentralized control and TSM con-
trol. A Decentralized TSM controller is proposed. The designed control law is applied to 
a multibody system. Numerical simulation is presented to show the effectiveness of the 
newly designed controller. [View Full Paper] 
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AAS 17-646 

ITERTIVE LEARNING CONTROL DESIGN 
WITH LOCAL LEARNING 

Jianzhong Zhu* and Richard W. Longman† 

Many real world situations have a linear system with input through a zero order hold and 
sampled output. Often one knows the desired output and would like to solve the inverse 
problem of finding that input that produces this output. For the majority of physical sys-
tems this results in an unusable input that grows exponentially with time and alternates 
sign each time step. Recent results demonstrated a new stable inverse method produced 
by allowing two or more zero order holds between each time step for which one that asks 
for zero error. This addresses a basic problem and has the potential to address difficulties 
in many control approaches. In particular, this paper treats problems such as a factory ro-
bot repeatedly starts from a home position, going to a newly arrived object where it per-
forms a high precision task, and then returns to home. High accuracy tracking is only 
needed for the task part of the trajectory, during which we make use of the stable inverse 
result. Other parts of the trajectory use a typical quadratic cost control that compromises 
tracking accuracy for reduced control effort. The purpose of this paper is to develop a 
method to create such desired trajectories with a zero-error tracking interval without in-
volving an unstable inverse. Then an easily implementable feedback version is created 
optimizing the same cost every time step from the current measured position. The above 
methods are only as good as the model used, so an Iterative Learning Control (ILC) algo-
rithm is created to iteratively learn to give local zero error in the real world while using 
an imperfect model. The approach also gives a method to apply ILC to endpoint prob-
lems without specifying an arbitrary trajectory to follow to reach the endpoint. This cre-
ates a method for ILC to apply to such problems without asking for accurate tracking of a 
somewhat arbitrary trajectory to accomplish learning to reach the desired endpoint.  

[View Full Paper] 
 

 

 

                                                                 
* Doctoral Candidate, Department of Mechanical Engineering MC4703, Columbia University, 500 West 120th Street, 
New York, New York 10027 USA. E-mail: jianzhong.zhu07@gmail.com. 
† Professor of Mechanical Engineering, Professor of Civil Engineering and Engineering Mechanics, Columbia Univer-
sity, New York, New York 10027, USA. E-mail: RWL4@columbia.edu. 

36

http://www.univelt.com/book=6398


  

AAS 17-656 

REPETITIVE CONTROL DESIGN FOR THE POSSIBLE DIGITAL 
FEEDBACK CONTROL CONFIGURATIONS 

Tianyi Zhang* and Richard W. Longman† 

Digital repetitive control (RC) seeks to make a feedback control system converge to zero 
tracking error at each sample time following a periodic command. Many spacecraft sen-
sors perform repeated periodic scanning maneuvers. Zero tracking error might best be 
accomplished by observing previous period error and computing the needed correction 
from the system inverse. Unfortunately, discrete time equivalents of continuous time 
models usually have zeros introduced outside the unit circle, making the inverse model 
unstable. The asymptotic pattern of zero locations is known in general for each pole ex-
cess. One can cancel all dynamics inside the unit circle, but one cannot cancel the zeros 
outside. The authors and co-workers have developed several RC methods to design FIR 
filters that compensate these zeros, each making its own pattern of additional zeros out-
side. Previous literature considers many pole excesses, but normally only considers a 
continuous time feedback system converted to discrete time. More general applications 
need to handle general digital feedback control systems, with digital controller, but con-
tinuous time plant, possible anti-aliasing filter, possible sensor noise filter, etc. It is the 
purpose of this paper to examine what the possible patterns of zero locations can be for 
these different situations. New situations occur with repeated original zero pattern outside 
the unit circle, or neighboring zeros outside, or the union of zero patters for two different 
pole excesses. Each RC approach addresses these situations differently. Generally, the 
RC based on inverse frequency response tends to produce the best result, but the other 
approaches develop understanding of the source of observed compensator zero patterns.  

[View Full Paper] 
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AAS 17-657 

DYNAMIC ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH 
MAGNETIC SUSPENSION ON SATELLITES 

Yao Zhang,* Chao Sheng,† Quan Hu,‡ Mou Li,§ Zixi Guo** and Rui Qi†† 
Beijing Institute of Technology, Beijing, 100081, P.R. China 

The vibration isolation platform is widely used to isolate the micro vibration that is harm-
ful to the sensitive payloads on satellites. The traditional passive vibration isolation plat-
form has difficulty in isolating vibration with low frequency and designing the stiffness 
and damping parameters. In this work, a new kind of vibration isolation platform whose 
actuators are based on the magnetic suspension techniques is presented. The first step 
studies the force between two coils with currents and gives a simplified model of the 
force. The model of a single strut of the vibration isolation platform is described and the 
control currents are designed. Then the dynamic model of the vibration isolation platform 
is built. Based on this dynamic model, the electromagnetic coupling among struts is dis-
cussed, the stability and the parameters sensitivity of the platform are analyzed. The ac-
curacy and efficiency of this study are validated through numerical simulations of an atti-
tude control loop using the vibration isolation platform. 
Key words: magnetic suspension techniques; vibration isolation. [View Full Paper] 
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AAS 17-670 

ROOT LOCUS OF ZEROS OF DISCRETE TIME SYSTEMS 
AS A FUNCTION OF SAMPLE RATE 

Wenxiang Zhou* and Richard W. Longman† 

Root locus plots are one of the basic design tools in classical control. They help the de-
signer tune control gains which appear linearly in the coefficients of the closed loop char-
acteristic polynomial. And they give considerable intuition to the designer, based on the 
simple rules that root loci must follow. When designing a control system, one wants to 
know where the zeros are, but when designing a digital control system new issues appear. 
The original zero locations when mapped to discrete time are functions of the new pa-
rameter, the sample time T (as well as the pole locations). In addition, new zeros are usu-
ally introduced by the discretization process. The purpose of this paper is to give a gen-
eral understanding of the nature of root loci of discrete time transfer function zeros as a 
function of this parameter T. We consider the complete range of values from T equal zero 
to infinity to understand the full plot. Reasonable sample rates will only use part of the 
plots. The characteristic polynomial coefficients are nonlinear functions of T so the usual 
root locus rules do not apply. One can be amazed at how the usual root locus rules are 
repeatedly violated, and what new kinds of unexpected behavior can be observed. 

[View Full Paper] 
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AAS 17-681 

PROOF OF TWO NEW STABLE INVERSES OF 
DISCRETE TIME SYSTEMS 

Xiaoqiang Ji,* Te Li† and Richard W. Longman‡ 

Digital control needs discrete time models, but conversion from continuous time, fed by a 
zero order hold, to discrete time introduces sampling zeros which are outside the unit cir-
cle in the majority of systems. Also, some systems are already non-minimum phase in 
continuous time. In both cases, the inverse problem to find the input necessary to produce 
a desired output, produces an unstable control action. This prevents many control ap-
proaches from making use of inverse models. This paper presents two new methods of 
producing stable inverses for such systems. Proofs are given for each. The approach de-
velops a matrix factorization of the stably invertible part of the system and the remaining 
part. One stable inverse gives zero error at every sample time, except for one or more 
time steps at the beginning of the trajectory, the number equal to the number of non-
minimum phase zeros. The second stable inverse asks to increase the sample rate by the 
number of non-minimum phase zeros, and ask for zero error at the original sample times. 
Control actions at the new time steps are determined by the minimum norm solution of 
chosen underdetermined equations. Having a stable inverse opens up opportunities for 
many control design approaches including Iterative Learning Control, Repetitive Control, 
Linear Model Predictive Control, and p-step ahead control that generalizes one step 
ahead control. [View Full Paper] 
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AAS 17-686 

IMPROVED DETUMBLING CONTROL FOR 
CUBESAT BY USING MEMS GYRO 

Dong-Hyun Cho,* Dong-Hun Lee† and Hae-Dong Kim‡ 

In this paper, we suggest the improved detumbling control for cubesat by using MEMS 
gyro. In general, satellite have to perform the detumbling attitude maneuver after it sepa-
rated from the launch vehicle because it has an initial separation angular velocity. For this 
control mode, satellite uses only a minimum number of sensors and actuators for reasons 
of power consumption and etc. In the past, satellite did not measure the own tumbling 
rate directly without gyro. Therefore, a B-dot controller using a magnetic field sensor and 
a magnetic torquers was widely used for this attitude maneuver. However, since the 
MEMS gyro is embedded in the on-board computer for cubesat, it is possible to measure 
the angular velocity for the detumbling controller. However, during the magnetic torquers 
are operating, it is difficult to measure the correct magnetic field for magnetic interfer-
ence from magnetic torquers. For this reason, the performance of previous detumbling 
control is limited. Therefore, in this paper, we suggested a simple filter to estimate the 
magnetic field data during the magnetic torquers are operating and it can be possible to 
reduce the settling time for detumbling mode. And it is also possible to control the 
switching time between magnetic sensor and actuator by using covariance information 
from filter. [View Full Paper] 
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AAS 17-691 

TIME OPTIMAL CONTROL OF A DOUBLE INTEGRATOR PLANT 
WITH FEEDBACK DYNAMICS 

C. S. Monk* and M. Karpenko† 

Optimal control solutions are typically implemented in open-loop based on nominal sys-
tem and environmental parameters. However, ignorance of the true values of system pa-
rameters can undermine the optimal control solution. While conventional feedback can 
compensate for significant levels of uncertainty, this comes at the expense of optimality. 
This paper examines minimum time rotational maneuvers for a double integrator plant, a 
canonical model for a variety of space systems, with a two degree-of-freedom control ar-
chitecture consisting of a traditional proportional-derivative feedback loop combined 
with a feed-forward signal. A real-time optimal control approach is developed for compu-
ting the feed-forward signal using a combination of optimal control analysis and classical 
control analysis techniques. The performance of this strategy is evaluated.  

[View Full Paper] 
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AAS 17-730 

FULLY-COUPLED DYNAMICAL JITTER MODELING OF 
VARIABLE-SPEED CONTROL MOMENT GYROSCOPES 

John Alcorn,* Cody Allard* and Hanspeter Schaub† 

Control moment gyroscopes (CMGs) and variable-speed control moment gyroscopes 
(VSCMGs) are a popular method for spacecraft attitude control and fine pointing. How-
ever, since these devices typically operate at high wheel speeds, mass imbalances within 
the wheels act as a primary source of angular jitter. Although these effects are often char-
acterized through experimentation in order to validate pointing stability requirements, it 
is of interest to include jitter in a computer simulation of the spacecraft in the early stages 
of spacecraft development. An estimate of jitter amplitude may be found by modeling 
imbalance torques as external disturbance forces and torques on the spacecraft. In this 
case, mass imbalances are lumped into static and dynamic imbalance parameters, allow-
ing jitter force and torque to be simply proportional to wheel speed squared. A physically 
realistic dynamic model may be obtained by defining mass imbalances in terms of a 
wheel center of mass location and inertia tensor. The fully-coupled dynamic model al-
lows for momentum and energy validation of the system. This is often critical when 
modeling additional complex dynamical behavior such as flexible dynamics and fuel 
slosh. This paper presents a generalized approach to VSCMG imbalance modeling of a 
rigid spacecraft hub with N VSCMGs. Implementations of the fully-coupled VSCMG 
model derived within this paper are released open-source as part of the Basilisk astrody-
namics software. [View Full Paper] 
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AAS 17-774 

ELECTRICAL-POWER CONSTRAINED ATTITUDE STEERING 

Harleigh C. Marsh,* Mark Karpenko† and Qi Gong‡ 

This paper examines the effectiveness of reducing the energy consumption of a reaction-
wheel array over the course of a slewing maneuver by steering the attitude of the space-
craft, in situations where it is not possible to command the reaction wheel torque directly. 
To explore this avenue, a set of constrained nonlinear non-smooth L1 optimal-control 
problems are formulated and solved. It is demonstrated that energy consumption, dissipa-
tive losses, and peak-power load, of the reaction-wheel array can each be reduced sub-
stantially, by controlling the input to the attitude control system through attitude steering, 
thereby avoiding software modifications to flight software. [View Full Paper] 
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AAS 17-775 

STOCHASTIC ATTITUDE CONTROL OF 
SPACECRAFT UNDER THRUST UNCERTAINTY 

Alen E. Golpashin,* Hoong C. Yeong,* Koki Ho† and N. Sri Namachchivaya‡ 

This study aims to address the problem of attitude control of spacecraft in presence of 
thrust fluctuations, which lead to stochastic accelerations. Many satellites and spacecraft 
rely on electric propulsion and other low thrust mechanisms to control and maintain atti-
tude. The thrust uncertainty may arise from sources such as power supply fluctuations, 
varying propellant flow rate, faulty thrusters, etc. Thus, an effective control strategy de-
mands a proper modeling of such phenomena. Most importantly, mission requirement, 
and mass/fuel limitations require a proactive method of control to mitigate the thrust un-
certainty and parasitic torque. In providing a method to mitigate the effect of the input 
uncertainties, spacecraft angular velocity is stabilized through an optimal stochastic con-
trol law. This work is presented as an extension to the classical Al’brekht method and 
ideas from the normal forms theory to solve the Hamilton-Jacobi-Bellman equation asso-
ciated with a Stochastic Differential Equation. Linear and Nonlinear stochastic control 
laws along with their performance analysis are presented. [View Full Paper] 
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AAS 17-806 

A SPARSE COLLOCATION APPROACH FOR 
OPTIMAL FEEDBACK CONTROL FOR 

SPACECRAFT ATTITUDE MANEUVERS 

Mehrdad Mirzaei,* Puneet Singla† and Manoranjan Majji‡ 

In this paper, sparse collocation approach is used to develop optimal feedback control 
laws for spacecraft attitude maneuvers. The effective collocation process is accomplished 
by utilizing the recently developed Conjugate Unscented Transformation to provide a 
minimal set of collocation points. In conjunction with the minimal cubature points, an l1 
norm minimization technique is employed to optimally select the appropriate basis func-
tions from a larger complete dictionary of polynomial basis functions. Finite time attitude 
regulation problem with terminal constraint is considered. Numerical simulations involve 
asymmetric spacecraft equipped with four reaction wheels. [View Full Paper] 
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AAS 17-816 

TIME-OPTIMAL REORIENTATION USING NEURAL NETWORK 
AND PARTICLE SWARM FORMULATION 

Ko Basu,* Robert G. Melton† and Sarah Aguasvivas-Manzano‡ 

A neural network will be developed to supplement a particle swarm algorithm to find 
near-minimum-time reorientation maneuvers in the presence of path constraints. The 
method employs a quaternion formulation of the kinematics, using B-splines to represent 
the quaternions. Dynamic Inversion will be used in the supervised training of the neural 
network. [View Full Paper] 
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AAS 17-819 

EFFECTS OF ROTOR GEOMERY ON THE PERFORMANCE OF 
VIBRATING MASS CONTROL MOMENT GYRPOSCOPES 

Ferhat Arberkli,* Burak Akbulut,† Kıvanc Azgin‡ and Ozan Tekinalp§ 

Elimination of unwanted oscillations on the satellite body that may be caused by the vi-
brating rotor control moment gyroscopes is addressed. It is mathematically shown that 
proper rotor inertia selection removes the unwanted oscillations on the output axis of the 
control moment gyroscope. Simulation results carried out using the ADAMS mechanical 
modeling and simulation software are given and discussed. [View Full Paper] 
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AAS 17-609 

CHARACTERISTICS OF ENERGY-OPTIMAL SPIRALING 
LOW-THRUST ESCAPE TRAJECTORIES* 

Nicholas Bradley† and Daniel Grebow‡ 

We present and discuss trajectory characteristics of low-thrust spacecraft thrusting along 
the instantaneous velocity vector toward escape. The behavior of the osculating eccen-
tricity is examined, in which eccentricity decreases to a minimum before quickly increas-
ing toward escape (e = 1). We find that the argument of periapsis replaces true anomaly 
as the fast time variable, and the spacecraft escapes near an osculating true anomaly of 90 
degrees. This behavior was observed by the authors while designing thrusting maneuvers 
for the Dawn spacecraft. In this paper the dynamical theory governing these observations 
is discussed and explored with numerical simulations. [View Full Paper] 
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AAS 17-623 

SEMI-ANALYTIC PRELIMINARY DESIGN OF 
LOW-THRUST MISSIONS* 

Javier Roa,† Anastassios E. Petropoulos‡ and Ryan S. Park§ 

Using generalized logarithmic spirals to approximate low-thrust trajectories, a new strat-
egy for the design of low-thrust gravity-assist transfers has been developed. Each transfer 
leg is defined by a semi-analytic model, and its solution is equivalent to a hybrid Lam-
bert’s problem. The method is suitable for approximating both flyby and rendezvous 
transfer legs. A branch and prune algorithm is used to generate a collection of initial 
guesses for further optimization. The analytic nature of the low-thrust model simplifies 
the pruning step, since dynamical and operational constraints (like maximum thrust or 
total Δv) can be imposed easily. The solutions obtained with the global search algorithm 
can be post-processed, filtered, and ranked according to various criteria. This is where the 
versatility of the method resides, because changing the selection criteria does not require 
a new search. Selected candidates are then optimized further, in order to generate actual 
low-thrust orbits. Two mission design examples are presented: an asteroid deflection mis-
sion using a kinetic impactor, and a rendezvous mission to Jupiter. These examples are 
used to analyze the convergence of the optimization stage, in particular how far from the 
optimal solution the initial guesses are. [View Full Paper] 
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AAS 17-626 

LOW-THRUST TRANSFER DESIGN BASED ON 
COLLOCATION TECHNIQUES: APPLICATIONS IN THE 

RESTRICTED THREE-BODY PROBLEM 

Robert Pritchett,* Kathleen Howell† and Daniel Grebow‡ 

Wide-ranging transfer capabilities are necessary to support the development of cislunar 
space. But, low-thrust transfers between stable periodic orbits are challenging in this re-
gime. Transfer design between such orbits cannot leverage the unstable manifold struc-
tures typically employed. Thus, a methodology for constructing these transfers, based on 
collocation, is demonstrated. Initial guesses comprised of coast arcs along periodic orbits 
as well as intermediate trajectory arcs from other periodic orbits are converged into feasi-
ble transfers and then refined using continuation and optimization strategies. This process 
applies to various spacecraft configurations and results are validated in a higher-fidelity 
model. Practical examples demonstrate collocation as a robust approach for computing 
low-thrust transfers. [View Full Paper] 
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AAS 17-727 

TRAJECTORY TRACKING GUIDANCE FOR 
LOW-THRUST GEOSYNCHRONOUS ORBIT INSERTION 

USING PIECEWISE CONSTANT CONTROL 

Ran Zhang* and Chao Han† 

Firstly, an indirect method is applied to optimize the optimal low-thrust transfer problem 
to geosynchronous orbit. A cubature Kalman filter parameter estimation algorithm is pre-
sented to solve the TPBVP, which does not rely on gradient information and is simple, 
robust. Then a guidance scheme based on tracking the reference orbit is developed to 
compensate the deviations of the real trajectory. Blending analytic thrust steering laws 
are used with a few weight coefficients which are determined based on the slope of the 
reference orbit, thus reducing the computing time significantly onboard the satellite. Fi-
nally, the whole trajectory optimization approach and guidance strategy developed in the 
paper are applied to low thrust GTO-GEO insertion missions. [View Full Paper] 
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AAS 17-740 

WAYPOINT-BASED ZEM/ZEV FEEDBACK GUIDANCE: 
APPLICATIONS TO LOW-THRUST INTERPLANETARY 

TRANSFER AND ORBIT RAISING 

Roberto Furfaro,* Giulia Lanave,† Francesco Topputo,‡ 
Marco Lovera§ and Richard Linares** 

Low-thrust guided trajectories for space missions are extremely important for fuel-
efficient autonomous space travel. The goal of this paper is to design an optimized, way-
point-based, closed-loop solution for low-thrust, long duration orbit transfers. The Zero-
Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) feedback guidance algorithm which has 
been demonstrated to exhibit great potential for autonomous onboard implementation is 
applied in a waypoint fashion. Generally, ZEM/ZEV is derived by solving an optimal 
guidance problem under well-defined assumptions, where the gravitational acceleration is 
either constant or time-dependent and the thrust/acceleration command is unlimited. If 
gravity is not constant, the target state is generally achieved in a suboptimal fashion. A 
way to improve the performances is to divide total trajectory into many segments, and 
determining with a rigorous optimization method near-optimal waypoints to connect the 
different segments. Here we consider two possible scenarios, i.e. 1) a low-thrust transfer 
Earth-Mars and 2) a low-thrust orbit raising from LEO to GEO. For both cases, open-
loop energy and fuel-optimal trajectories generated by L. Ferrella and F. Topputo13

 are 
considered as reference trajectories where a set of arbitrary points are targeted by the 
ZEM/ZEV guidance in a sequential fashion. An initial parametric study is conducted to 
evaluate guidance performances as function of the number of the selected waypoints. 
Subsequently, a global optimization problem, parametrized with the position of the points 
on the trajectory is solved using a genetic algorithm to determine the minimum set of 
waypoints necessary for close-to-fuel-optimal waypoint space guidance. The optimiza-
tion results are compared with the parametric analysis for both scenarios to show that the 
proposed approach is feasible in achieving quasi-optimal performances even for challeng-
ing cases where 500 revolutions are required for low-thrust orbit raising in the Earth 
gravitational field. Finally, the proposed waypoint-based guidance algorithm is simulated 
in a more realistic scenarios including perturbing acceleration to verify the robustness of 
the system via a Monte Carlo analysis. [View Full Paper] 
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AAS 17-748 

OPTIMAL POWER PARTITIONING FOR ELECTRIC THRUSTERS 

Lorenzo Casalino* and Matthew A. Vavrina† 

High power missions may employ more than one EP thruster and the problem of power 
partitioning among the thrusters becomes relevant. Space trajectories are controlled by 
the thrust vector. Optimization consists of finding the optimal control law for thrust mag-
nitude and direction to maximize a specified performance index, while fulfilling given 
boundary conditions. The paper discusses methods to find the optimal power partitioning 
among the available thrusters. Different approaches based on indirect methods, direct 
methods, and evolutionary algorithms are presented. The paper compares the results for 
test cases related to missions to asteroids, and discusses merits and possible improve-
ments. [View Full Paper] 
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AAS 17-757 

EXPLORATION OF LOW-THRUST LOW-ENERGY 
TRAJECTORIES TO EARTH-MOON HALO ORBITS 

Bindu B. Jagannatha,* Vishwa Shah,† Ryne Beeson* and Koki Ho‡ 

Calculating low-energy low-thrust (LE-LT) trajectories that join Earth orbits to lunar or-
bits in the circular restricted three-body (CR3B) model involves designing the spiral 
thrust arcs around the primaries on both ends. Existing methods are computationally ex-
pensive, involve providing hard-to-obtain initial guesses and do not lend themselves well 
to quick parametric trade studies. In this paper, two methods are discussed to explore the 
solution space for designing the Earth-Moon LE-LT transfers and their results compared 
against each other. The first uses a modified low-thrust feedback control law (Q-law) to 
design the spiral thrust arcs, while the second patches a tangential thrust arc with a Finite 
Burn Low Thrust (FBLT) arc to place the spacecraft onto the invariant manifold of the 
desired halo orbit. [View Full Paper] 
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AAS 17-766 

IMPROVEMENTS TO SUNDMAN-TRANSFORMED HDDP 
THROUGH MODIFIED EQUINOCTIAL ELEMENTS 

Jonathan D. Aziz* and Daniel J. Scheeres† 

Previous efforts addressed the challenge of low-thrust many-revolution trajectory optimi-
zation by applying a Sundman transformation to change the independent variable of the 
spacecraft equations of motion to the eccentric anomaly and performing the optimization 
with Hybrid Differential Dynamic Programming (HDDP). Improvements to Sundman-
transformed HDDP have been realized by representing the spacecraft state with modified 
equinoctial elements. This paper shows how the modified equinoctial element state repre-
sentation enters the HDDP algorithm and presents improved results for example transfers 
from geostationary transfer orbit (GTO) to geosynchronous orbit (GEO).  

[View Full Paper] 
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AAS 17-832 

LOW-THRUST TRAJECTORY OPTIMIZATION WITH 
SIMPLIFIED SQP ALGORITHM 

Nathan L. Parrish* and Daniel J. Scheeres† 

The problem of low-thrust trajectory optimization in highly perturbed dynamics is a 
stressing case for many optimization tools. Highly nonlinear dynamics and continuous 
thrust are each, separately, non-trivial problems in the field of optimal control, and when 
combined, the problem is even more difficult. This paper describes a fast, robust method 
to design a trajectory in the CRTBP (circular restricted three body problem), beginning 
with no or very little knowledge of the system. The approach is inspired by the SQP (se-
quential quadratic programming) algorithm, in which a general nonlinear programming 
problem is solved via a sequence of quadratic problems. A few key simplifications make 
the algorithm presented fast and robust to initial guess: a quadratic cost function, neglect-
ing the line search step when the solution is known to be far away, judicious use of end-
point constraints, and mesh refinement on multiple shooting with fixed-step integration.  

[View Full Paper] 
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AAS 17-550 

DEBRIS CLOUD CONTAINMENT BOUNDARY ANOMALY 

Brian W. Hansen* 

A satellite breakup caused by a hypervelocity impact or explosion will create a large 
cloud of debris particles. One way to represent the evolving boundary of such a cloud is 
to construct a surface using fragments that all have the maximum breakup spreading 
speed, but in different directions. It has previously been shown that such a boundary sur-
face will contain any lower-velocity fragments from the breakup event under certain as-
sumptions. This paper investigates an anomaly that arises where those assumptions do 
not hold, allowing some lower-velocity fragments to escape the boundary at small dis-
tances and for small intervals of time. [View Full Paper] 
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AAS 17-568 

IMPROVED REENTRY PREDICTIONS WITH 
HIGH FIDELITY MODELS 

Eric A. Eiler,* Roger C. Thompson† and Jason A. Reiter‡ 

Space object reentry predictions are closely tied to uncertainties in multiple key parame-
ters that define the reentering objects and their atmospheric environment. Efforts focusing 
on the uncertainty surrounding objects’ ballistic coefficients are described, with the goal 
of providing more consistent and accurate lifetime predictions. Times of reentry were de-
rived by high fidelity integration methods. By using an ensemble of runs rather than one 
single propagation run, trends and variations of multiple reentry prediction times were 
evaluated. Adjustments to the ballistic coefficient were made to achieve consistent 
reentry predictions. These predictions are compared to historical reentry data and other 
methods’ predictions. [View Full Paper] 
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AAS 17-592 

DEBRIS OBJECT ORBIT INITIALIZATION USING 
THE PROBABILISTIC ADMISSIBLE REGION WITH 

ASYNCHRONOUS HETEROGENEOUS MEASUREMENTS* 

Waqar H. Zaidi,† W. R. Faber,† I. I. Hussein,† M. Mercurio,† C. W. T. Roscoe,† 
M. P. Wilkins† and P. W. Schumacher, Jr.‡ 

One of the most challenging problems in treating space debris is the characterization of 
the orbit of a newly detected and uncorrelated measurement. The admissible region is de-
fined as the set of physically acceptable orbits (i.e. orbits with negative energies) con-
sistent with one or more measurements of a Resident Space Object (RSO). Given addi-
tional constraints on the orbital semi-major axis, eccentricity, etc., the admissible region 
can be constrained, resulting in the constrained admissible region (CAR). Based on 
known statistics of the measurement process, one can replace hard constraints with a 
Probabilistic Admissible Region (PAR), a concept introduced in 2014 as a Monte Carlo 
uncertainty representation approach using topocentric spherical coordinates. Ultimately, a 
PAR can be used to initialize a sequential Bayesian estimator and to prioritize orbital 
propagations in a multiple hypothesis tracking framework such as Finite Set Statistics 
(FISST). To date, measurements used to build the PAR have been collected concurrently 
and by the same sensor. In this paper, we allow measurements to have different time 
stamps. We also allow for non-collocated sensor collections; optical data can be collected 
by one sensor at a given time and radar data collected by another sensor located else-
where. We then revisit first principles to link asynchronous optical and radar measure-
ments using both the conservation of specific orbital energy and specific orbital angular 
momentum. The result from the proposed algorithm is an implicit-Bayesian and non-
Gaussian representation of orbital state uncertainty. [View Full Paper] 
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AAS 17-600 

APPLICATION OF NEW DEBRIS RISK EVOLUTION AND 
DISPERSAL (DREAD) TOOL TO CHARACTERIZE  

POST-FRAGMENTATION RISK 

Daniel L. Oltrogge* and David A. Vallado† 

The evolution of the debris field generated by an on-orbit explosion or collision fragmen-
tation event is of critical concern to space operators and SSA organizations. Following 
AGI's recent development of the "Debris Risk Evolution And Dispersal" (DREAD) anal-
ysis tool, the authors apply that tool to simulate the effects of collision and explosion 
events. DREAD modeling of the Iridium/Cosmos collision of 2009 is compared with 
SSN-observed fragments to verify that the DREAD predictions match well with empiri-
cal observations. Additional collision and explosion events are modeled by DREAD to 
characterize the resulting 3D fragmentation cloud evolution and subsequent risk to all 
active satellites. Significantly, the DREAD tool facilitates the rapid evaluation of frag-
mentation downstream collision risk to active satellites as an SSA tool. Additional speed 
improvements and parallelization techniques to DREAD are also explored.  

[View Full Paper] 
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AAS 17-639 

OPTICAL DATA ASSOCIATION IN A MULTIPLE HYPOTHESIS 
FRAMEWORK WITH MANEUVERS 

W. R. Faber,* Islam I. Hussein,† John T. Kent,‡  
Shambo Bhattacharjee§ and Moriba K. Jah** 

In Space Situational Awareness (SSA), one may encounter scenarios where the meas-
urements received at a certain time do not correlate to a known Resident Space Object 
(RSO). Without information that uniquely assigns the measurement to a particular RSO 
there can be no certainty on the identity of the object. It could be that the measurement 
was produced by clutter or perhaps a newly birthed RSO. It is also a possibility that the 
measurement came from a previously known object that maneuvered away from its pre-
dicted location. Typically, tracking methods tend to associate uncorrelated measurements 
to new objects and wait for more information to determine the true RSO population. This 
can lead to the loss of object custody. The goal of this paper is to utilize a multiple hy-
pothesis framework coupled with some knowledge of RSO maneuvers that allows the 
user to maintain object custody in scenarios with uncorrelated optical measurement re-
turns. This is achieved by fitting a Fisher-Bingham-Kent type distribution to the hypothe-
sized maneuvers for accurate data association using directional discriminant analysis.  

[View Full Paper] 
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AAS 17-737 

ESTIMATION OF UNTRACKED GEOSYNCHRONOUS 
POPULATION FROM SHORT-ARC ANGLES-ONLY 

OBSERVATIONS 

Liam M. Healy* and Mark J. Matney† 

Telescope observations of the geosynchronous regime will observe two basic types of 
objects — objects related to geosynchronous earth orbit (GEO) satellites, and objects in 
highly elliptical geosynchronous transfer orbits (GTO). Because telescopes only measure 
angular rates, the GTO can occasionally mimic the motion of GEO objects over short 
arcs. A GEO census based solely on short arc telescope observations may be affected by 
these geosynchronous mimics. A census that includes multiple angular rates can get an 
accurate statistical estimate of the GTO population, and that then can be used to correct 
the estimate of the geosynchronous earth orbit population. [View Full Paper] 
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AAS 17-745 

THE PERFORMANCE OF A DIRECTION-BASED BAYESIAN 
FILTER IN THE ORBITAL TRACKING PROBLEM 

John T. Kent,* Shambo Bhattacharjee,† Islam I. Hussein‡ and Moriba K. Jah§ 

The space debris tracking problem from a series of angles-only observations can be 
viewed as an example of Bayesian filtering. Bayesian filtering is easy to implement if the 
joint distribution of the state vector and the observation vector is normally distributed. 
Under Keplerian dynamics, the propagation of an initial normally-distributed point cloud 
does not tend to remain normal in various standard coordinate systems. Hence we pro-
pose using an “adapted structural(AST) coordinate system”, which preserves approximate 
normality much more successfully. We analyse the performance of a Bayesian filter in 
this new coordinate system. [View Full Paper] 
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AAS 17-792 

FUSING SURVEY AND FOLLOW-UP FOR SSA SENSOR TASKING 

Carolin Frueh* 

In the detection and tracking of space objects usually two observation modes are used. 
Survey for initial detection without a priori information and follow-up to allow for initial 
orbit determination after the initial detection and for catalog maintenance. In this new 
framework, sensor tasking is formulated as an optimization problem under realistic con-
ditions. It allows to find the optimal balance between sensor time to detect new objects 
and to secure and maintain them in the catalog. Probability regions are mapped out. Sim-
ulations are used to show the performance of the new optimized framework.  

[View Full Paper] 
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AAS 17-808 

MANEUVERING DETECTION AND PREDICTION USING 
INVERSE REINFORCEMENT LEARNING FOR 

SPACE SITUATIONAL AWARENESS 

Richard Linares* and Roberto Furfaro† 

This paper uses inverse Reinforcement Learning (RL) to determine the behavior of Space 
Objects (SOs) by estimating the reward function that an SO is using for control. The ap-
proach discussed in this work can be used to analyze maneuvering of SOs from observa-
tional data. The inverse RL problem is solved using the feature matching approach. This 
approach determines the optimal reward function that a SO is using while maneuvering 
by assuming that the observed trajectories are optimal with respect to the SO’s own re-
ward function. This paper utilizes estimated orbital element data to determine the behav-
ior of SOs in a data-driven fashion. Simple proof-of-concept results are shown for a 
simulation example. [View Full Paper] 
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AAS 17-809 

CONJUGATE UNSCENTED TRANSFORM BASED JOINT 
PROBABILITY DATA ASSOCIATION 

Nagavenkat Adurthi,* Manoranjan Majji,†  
Utkarsh Ranjan Mishra‡ and Puneet Singla§ 

The conventional Joint Probabilistic Data Association (JPDA) filtering approach is ex-
tended using quadrature based methods to achieve better accuracy and stability. Recently 
developed conjugate unscented transformation is used in conjunction with the probabilis-
tic data association approach to estimate the association probabilities, while carrying out 
the state estimation filters for the target candidates of interest. Numerical examples are 
used to evaluate the utility of the proposed algorithms with Extended Kalman Filter 
(EKF) based approaches for target association. [View Full Paper] 
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AAS 17-588 

A HIGH EARTH, LUNAR RESONANT ORBIT FOR 
SPACE SCIENCE MISSIONS 

Gregory A. Henning,* Randy Persinger† and George R. Ricker‡ 

To achieve an unobstructed view of space and a stable thermal environment, the Transit-
ing Exoplanet Survey Satellite (TESS) science mission will insert, via lunar gravity as-
sist, into a P/2-HEO Moon-resonant orbit when it launches in 2018. Previous analysis [1] 
yielded insight into this orbit’s behavior, which can be used to optimally select robust 
mission designs. This paper examines the full orbit trade space to optimize specific 
launch windows with the lowest possible ΔV and other key mission constraints. Eclipse 
avoidance is a particularly difficult challenge for this orbit, and a sensitivity study to ini-
tial conditions and maneuver errors was performed. [View Full Paper] 
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AAS 17-604 

PARKER SOLAR PROBE NAVIGATION: 
ONE YEAR FROM LAUNCH* 

Paul F. Thompson,† Troy Goodson,‡ Min-Kun Chung,‡ Drew Jones,§  
Eunice Lau,§ Neil Mottinger§ and Powtawche Valerino‡  

Parker Solar Probe (PSP) will be the first spacecraft designed to fly deep within the Sun’s 
lower corona and also becoming the fastest spacecraft flown. Launch is scheduled for 
next year, with a 20-day launch period beginning on 31 July 2018. PSP will be on a bal-
listic trajectory, requiring seven Venus flybys to progressively lower the perihelion over 
the seven-year mission. This near-solar environment can be particularly challenging from 
a spacecraft design as well as a navigation perspective. We discuss an overview of the 
mission along with some of the particular challenges in navigating PSP.  

[View Full Paper] 
 

 

                                                                 
* Copyright © 2017 California Institute of Technology. Government sponsorship acknowledged. 
† Parker Solar Probe Navigation Team Lead. 
‡ Parker Solar Probe Flight Path Control Analyst. 
§ Parker Solar Probe Orbit Determination Analyst. 
All at Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 
91109, USA. 

75

http://www.univelt.com/book=6430


  

AAS 17-631 

FLIGHT PATH CONTROL ANALYSIS FOR 
PARKER SOLAR PROBE 

Powtawche N. Valerino,* Paul Thompson,† Drew Jones,‡ Troy Goodson,‡ 
Min-Kun Chung‡ and Neil Mottinger‡  

An unprecedented NASA mission to study the Sun, known as Parker Solar Probe (PSP), 
is under development. The primary objective of the PSP mission is to gather new data 
within 10 solar radii of the Sun’s center. The purpose of this paper is to review the statis-
tical analysis of trajectory correction maneuvers (TCMs) for PSP’s baseline trajectory. 
The baseline mission includes a total of 42 TCMs that will be accomplished with a mon-
opropellant propulsion system that consists of twelve 4.4 N thrusters. Assuming current 
navigation models, statistical analyses for each reference trajectory during the 20-day 
launch period result in a total ΔV99 of less than 100 m/s. [View Full Paper] 
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AAS 17-675 

SCALING AND BALANCING FOR 
FASTER TRAJECTORY OPTIMIZATION 

I. M. Ross,* Q. Gong,† M. Karpenko‡ and R. J. Proulx§ 

It is well-known that proper scaling can increase the efficiency of computational prob-
lems. In this paper we define and show that a balancing technique can substantially im-
prove the computational efficiency of trajectory optimization algorithms. We also show 
that non-canonical scaling and balancing procedures may be used quite effectively to re-
duce the computational difficulty of some hard problems. These lessons learned have 
been used for several flight and field operations at NASA and DoD. A surprising aspect 
of our analysis shows that it may be inadvisable to use auto-scaling procedures employed 
in some software packages. All of our results are agnostic to the specifics of the compu-
tational method; hence, they can be used immediately to enhance the utility of any ex-
isting algorithm or software. [View Full Paper] 
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AAS 17-694 

A DATABASE OF PLANAR AXI-SYMMETRIC PERIODIC ORBITS 
FOR THE SOLAR SYSTEM 

Ricardo L. Restrepo* and Ryan P. Russell† 

A broad database of planar, axi-symmetric three-body periodic orbits for planets and 
main planetary satellites in the Solar System is generated and made available online. The 
database generation is based on a grid search that incorporates a robust differential cor-
rector with a full second-order trust region method. The solutions include periodic orbits 
in the vicinity of the secondary, orbits that circulate the primary, and more complex solu-
tions that orbit both, allowing for transitions in between. Using a descriptive nomencla-
ture, a detailed characterization of the solutions is presented, including new set of fami-
lies not previously reported in literature. Emphasis is given on a particular set of solutions 
that approximate heteroclinic connections between pairs of periodic orbits, providing a 
framework for efficient trajectory design in multi-body environments. [View Full Paper] 
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AAS 17-724 

AUTOMATED NODE PLACEMENT CAPABILITY FOR 
SPACECRAFT TRAJECTORY TARGETING USING  
HIGHER-ORDER STATE TRANSITION MATRICES 

Christopher Spreen* and Kathleen Howell† 

Targeting and guidance are nontrivial operations, but frequently accomplished by em-
ploying discretized representations of a trajectory via nodes along the path, reflecting the 
full state at specific times. In complex regimes, sensitivity to the start-up arcs, through 
the node locations, requires experience and knowledge of the dynamical environment for 
efficient corrections. Building upon previous investigations, an updated, enhanced algo-
rithm is developed to place nodes by leveraging the stability attributes of local Lyapunov 
exponents. The use of multi-complex numbers for higher-order numerical differentiation 
aids in the computation of higher-order state transition matrices that expand the capabili-
ties and performance of the node placement algorithm. [View Full Paper] 
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AAS 17-749 

DESIGN OF LUNAR-GRAVITY-ASSISTED ESCAPE MANEUVERS 

Lorenzo Casalino* and Gregory Lantoine† 

Lunar gravity assist is a means to boost the energy and C3 of an escape maneuver. Two 
approaches are applied and tested for the design of trajectories aimed at Near-Earth aster-
oids. Maneuvers with two lunar gravity assists are considered and analyzed. Indirect op-
timization of the heliocentric leg is combined to an approximate analytical treatment of 
the geocentric phase for short escape maneuvers. The results of pre-computed maps of 
escape C3 are used for the design of longer sun-perturbed escape sequences. Features are 
compared and suggestions about a combined use of the approaches are presented. The 
techniques are efficiently applied to the design of a mission to a near-Earth asteroid.  

[View Full Paper] 
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AAS 17-776 

MCOLL: MONTE COLLOCATION TRAJECTORY DESIGN TOOL 

Daniel J. Grebow* and Thomas A. Pavlak*  

In this paper we describe a prototype low-thrust optimization software being developed at 
JPL. The software tool is based on a collocation algorithm where a trajectory discretiza-
tion is fitted and adjusted until the underlying dynamics equations of motion are satisfied. 
The resulting large scale non-linear programming problem may either be optimized with 
IPOPT or KNITRO. The user specifies path constraints, boundary constraints, and objec-
tives. We describe the collocation algorithm as well as mesh refinement strategies, and 
apply the software tool to solve various example problems. [View Full Paper] 
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AAS 17-790 

APPROXIMATE-OPTIMAL FEEDBACK GUIDANCE FOR SOFT 
LUNAR LANDING USING GAUSSIAN PROCESS REGRESSION 

Pradipto Ghosh,* James Woodburn† and Cody Short‡ 

A recently-developed optimal feedback synthesis method based on Gaussian Process Re-
gression (GPR) is applied to soft lunar landing guidance. GPR is a form of supervised 
learning technique that is highly useful in constructing surrogate models of unknown 
functions from input-output training dataset. In this work, GPR has been utilized in cap-
turing the functional relationship between optimal state and control using a pre-generated 
field of extremals as training data. At each guidance call, when control computation is 
desired for a newly-sensed state, a new Gaussian process model regressing state and con-
trol is created with only a subset of the offline-computed training data, those that are 
“temporally similar” to the current state. It is argued that this method of sequentially gen-
erating approximately optimal controls from a new regression model at each step effec-
tively relaxes the assumption that the underlying map is smooth over the domain of inter-
est. Having designed the GPR-based optimal state-feedback algorithm, its usefulness is 
assessed by verifying that its application leads to near-optimal trajectories when the 
lander starts from perturbed initial conditions. A distinctive feature of this work is the 
realistic quantification of the initial state uncertainty in the form of a full position-
velocity estimation error covariance matrix obtained from lunar orbit determination. By 
randomly sampling states within the extent of this uncertainty, it is shown through nu-
merical experiments that the GPR-based guidance algorithm is highly effective in com-
pensating for imperfectly-known initial conditions of the lander. [View Full Paper] 
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AAS 17-842 

TIME-FREE TARGETING FOR 
DIRECT TRAJECTORY OPTIMIZATION 

Nitin Arora,* Javier Roa,† Anastassios E. Petropoulos‡ and Nathan Strange§ 

A bounded, time transformation, based on vercosine of the change in eccentric anomaly, 
is introduced. This transformation, coupled with the F and G functions, explicitly defines 
the velocity vectors for a pair of position vectors. Using this property, a discretization 
strategy is formulated where continuous or impulsive thrusting arcs are represented by set 
of impulses, implicitly realized by maintaining spatial continuity. Time discontinuity is 
propagated forward and removed at the last grid point either via explicit constraints or a 
Lambert arc. The trajectory is transformed into a NLP which is solved using existing 
solvers. Algorithm performance is studied and compared to JPL’s Mission Analysis Low-
Thrust Optimizer(MALTO). [View Full Paper] 
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AAS 17-618 

APPLICABILITY OF THE MULTI-SPHERE METHOD TO FLEXIBLE 
ONE-DIMENSIONAL CONDUCTING STRUCTURES 

Jordan Maxwell* and Hanspeter Schaub† 

Electrostatic forces and torques are being exploited in space mission concepts such as 
charged formation flying, inflatable membrane structures, and space debris mitigation 
technologies. Electrostatic disturbances are also being studied to predict light-weight 
space debris trajectories. The analysis of these concepts requires faster-than-realtime 
electrostatic force and torque modeling. The recently developed Multi-Sphere Method 
(MSM) approximates the electrostatic field about finite bodies using optimally config-
ured conducting spheres as a base function yielding far-faster than realtime force evalua-
tions. The original MSM development makes the assumption that the space object both 
has a conducting outer surface and has a rigid shape. This paper investigates the effect of 
relaxing the rigid shape assumption on model accuracy by studying the charged defor-
mation on a flexible one-dimensional structure. The MSM model is initially developed 
for a non-deformed state, and then retained as the model geometry is varied. The results 
show that the impact of the rigid shape approximation is promisingly low, approximating 
the position of all parts of a 6 cm wire to well within 1 cm. [View Full Paper] 
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AAS 17-636 

A STABILIZATION METHODOLOGY OF TETHERED SPACE TUG 
USING ELECTRICAL PROPULSION SYSTEM 

Yu Nakajima,* Naomi Murakami,* Toru Yamamoto† and Koji Yamanaka‡ 

This paper proposes a tethered tugging approach for an electrical propulsion system. In 
general, the thrust force of electrical propulsion is so weak that it has difficulty maintain-
ing tension on the tether. A slack tether adversely affects system stability and poses a 
higher risk of collision between debris and the tugging satellite. Therefore, this paper 
proposes an approach that utilizes the gravity gradient torque to stabilize the tethered sys-
tem by positioning the tugging spacecraft right under the debris on the radial axis. This 
configuration is stable because gravity gradient torque helps the tether to keep itself 
aligned on the radial axis. The validity of the proposed approach was verified through 
dynamics simulation and compared to the general horizontal tugging approach. It is de-
sirable to use soft material since it increases the stability margin compared to the stiff 
tether. However, the results indicated that the tether longer than 100 m successfully tug 
the debris stably regardless of its material. [View Full Paper] 
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AAS 17-706 

OPTIMAL BLADE PITCH PROFILE FOR 
AN AUTOROTATIVE ENTRY VEHICLE 

Dario Modenini,* Marco Zannoni* and Paolo Tortora† 

We consider the Entry Descent and Landing problem for a vehicle equipped with an un-
powered rotary decelerator, having Mars as planetary target. We aim at computing an op-
timal blade pitch profile to maximize the overall decelerating effect exerted by the rotor. 
To this end, we set up an optimization problem with one state variable (the altitude) spec-
ified at an unknown terminal time, with the landing speed as the objective function to be 
minimized. Results show the effectiveness of the proposed approach in reducing the ter-
minal velocity with respect to what achieved when using simple constant pitch settings, 
by more than 10 m/s. [View Full Paper] 
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AAS 17-725 

DESIGN OF OBSTACLE AVOIDANCE IN HIGH TRACKING 
ACCURACY FOR SPATIAL MANIPULATOR 

Ting-ting Sui,* Xiao Ma,† Jian Guo† and Jun Guo‡ 

Aiming at the shortage of traditional obstacle avoidance algorithm, an obstacle avoidance 
algorithm based on spatial operator algebra which applicable to multiple obstacles is put 
forward in this paper; the complexity of Jacobian is greatly simplified by the algorithm 
based on Spatial operator algebra (SOA), and the minimum distance between each obsta-
cle and manipulator is calculated by the algorithm, and transformed to the escape speed 
of each bar by the Jacobian transpose matrix. With the gradient projection method, the 
escape speed of each bar is used to obtain the joint velocity related. At the same time, 
with the position tracking control of the end, the obstacle avoidance control could be ob-
tained, which can ensure that the efficiency of calculation is O(N) and accuracy of posi-
tion the end reach is high, based on efficient modeling method in kinematics and dynam-
ics. A manipulator with 7-DOF is used in the simulation whose results verify the correct-
ness and effectiveness of the algorithm. [View Full Paper] 
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AAS 17-734 

LABORATORY EXPERIMENTS ON THE CAPTURE OF 
A TUMBLING OBJECT BY A SPACECRAFT-MANIPULATOR 

SYSTEM USING A CONVEX-PROGRAMMING-BASED GUIDANCE 

Josep Virgili-Llop,* Costantinos Zagaris,† Richard Zappulla II,‡  
Andrew Bradstreet§ and Marcello Romano** 

An onboard implementable optimization-based guidance approach for the capture of 
tumbling objects by spacecraft equipped with a robotic manipulator is demonstrated on a 
hardware-in-the-loop test bed. The experimental demonstration is conducted using space-
craft simulators operating on the reduced-gravity and drag-free dynamic environment 
provided by a planar air bearing test bed. The proposed approach uses a two-step sequen-
tial convex programming procedure introduced in an earlier work. The first step optimiz-
es the center-of-mass translation while the second step optimizes the motion of the multi-
body system around its center-of-mass. A sequential convex programming procedure is 
used on both optimization steps, casting the original optimization problem into a collec-
tion of convex programming problems. A proof of convergence is introduced here for the 
system-wide translation in the presence of non-convex keep-out zone constraints. These 
experiments significantly advance the demonstrated state-of-the-art for robotic capture 
maneuvers. [View Full Paper] 
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AAS 17-747 

DYNAMIC MODELING OF FOLDED DEPLOYABLE SPACE 
STRUCTURES WITH FLEXIBLE HINGES 

JoAnna Fulton* and Hanspeter Schaub† 

A modeling approach for capturing the three-dimensional deployment dynamics of com-
plex folded deployable structures with flexible hinges on spacecraft is developed. This 
paper provides an initial investigation on how to model flexible hinges that connect rigid 
panels. Such hinges are emerging as a promising use of composite materials to create 
novel folded structures. The nonlinear multi-body dynamics is studied and described us-
ing an energy-based approach and parameterizations developed for attitude dynamics and 
control to better understand how the structure’s motion affects the spacecraft. While this 
study assumes a simple hinge-response behavior, the dynamical formulation is general 
enough to substitute experimentally derived response functions in future efforts.  

[View Full Paper] 
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AAS 17-797 

CISLUNAR MISSION DESIGN FOR LOW-THRUST SMALLSATS 

Vishwa Shah,* Joshua Aurich,* Ryne Beeson,† 
Donald Ellison† and Kaushik Ponnapalli‡ 

The continued development of small satellite technology has expanded the menu of mis-
sions that these craft could potentially carry out to Lagrange points, the Moon, and even 
near Earth objects. Several small sats will be launched as secondary payloads on Explorer 
Mission 1 (EM-1) in 2018, and will explore different science objectives in the cislunar 
region. However, due to their limited power and propulsion capabilities as well as a high 
velocity release condition from EM-1, designing feasible solutions is a challenging task. 
In addition, launch conditions and spacecraft parameters have larger variability and 
change more often during the mission design and production phases in comparison to 
larger explorer and flagship type missions; driving the need for an efficient and robust 
automated tool set that enables rapid prototyping of mission concepts. In this paper, we 
apply a hybrid optimal control framework that leverages dynamical structures found in 
multi-body regimes to explore low-energy solutions to EM-1 small satellite type mis-
sions. The hybrid optimal control framework supports a flexible and automated approach 
that still allows full user guidance via appropriately formed objectives and constraints, 
while enabling a search of the design space in an intelligent manner that can yield non-
intuitive results. [View Full Paper] 
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AAS 17-824 

STABILITY ANALYSIS OF 
GENERALIZED SAIL DYNAMICS MODEL 

Go Ono,* Shota Kikuchi† and Yuichi Tsuda‡ 

This paper addresses a stability analysis for an attitude model called the Generalized Sail 
Dynamics Model, which describes attitude dynamics of a momentum-biased spacecraft 
with arbitrary shape and optical reflectance properties. In the model, there is a coupling 
between internal angular momentum of a spacecraft and solar radiation pressure (SRP) 
torque. This results in passive sun-tracking attitude motion, and therefore, stability is par-
ticularly important. In this paper, general stability conditions are derived analytically by 
eigenvalue and phase plane analyses, and are verified with a numerical analysis by com-
puting SRP torque acting on a spacecraft. The results provide an insight into spacecraft 
design for stable attitude motion. [View Full Paper] 
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AAS 17-556 

A MONTE-CARLO STUDY OF 
CONJUNCTION ANALYSIS USING PARAMAT 

Darrel J. Conway* 

This study uses the numerical engine in the General Mission Analysis Tool, driven from 
the parallel processing tool Paramat, to model a conjunction analysis between two space-
craft on eccentric, nearly coincident trajectories. The spacecraft initial states are separated 
by 92 meters, and come to within about 9 meters of each other two days later when prop-
agated on their nominal trajectories. The covariance matrix of the initial state data is used 
to perturb each spacecraft, and the spacecraft are then propagated to the point of closest 
approach. A Monte Carlo study of the close approach separations and the probability of 
collision is presented using these perturbed states. The modeling is performed using sev-
eral different force models, and the results of each configuration are shown to be similar. 
Two additional test cases are also briefly examined. Performance data for the study is 
presented, along with a discussion of the methodology and of the tools used.  

[View Full Paper] 
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AAS 17-559 

CONJUNCTION ASSESSMENT SCREENING VOLUME SIZING 
AND EVENT FILTERING IN LIGHT OF NATURAL CONJUNCTION 

EVENT DEVELOPMENT BEHAVIORS 

M. D. Hejduk* and D. A. Pachura† 

Conjunction Assessment screening volumes used in the protection of NASA satellites are 
constructed as geometric volumes about these satellites, of a size expected to capture a 
certain percentage of the serious conjunction events by a certain time before closest ap-
proach. However, the analyses that established these sizes were grounded on covariance-
based projections rather than empirical screening results, did not tailor the volume sizes 
to ensure operational actionability of those results, and did not consider the adjunct abil-
ity to produce data that could provide prevenient assistance for maneuver planning. The 
present study effort seeks to reconsider these questions based on a six-month dataset of 
empirical screening results using an extremely large screening volume. The results, pur-
sued here for a highly-populated orbit regime near 700km altitude, identify theoretical 
limits of screening volume performance, explore volume configuration to facilitate both 
maneuver remediation planning as well as basic asset protection, and recommend sizing 
principles that maximize volume performance while minimizing the capture of “chaff” 
conjunctions that are unlikely ever to become serious events. [View Full Paper] 
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AAS 17-567 

REMEDIATING NON-POSITIVE DEFINITE STATE COVARIANCES 
FOR COLLISION PROBABILITY ESTIMATION 

Doyle T. Hall,* Matthew D. Hejduk† and Lauren C. Johnson‡ 

The NASA Conjunction Assessment Risk Analysis team estimates the probability of col-
lision (Pc) for a set of Earth-orbiting satellites. The Pc estimation software processes satel-
lite position+velocity states and their associated covariance matrices. On occasion, the 
software encounters non-positive definite (NPD) state covariances, which can adversely 
affect or prevent the Pc estimation process. Interpolation inaccuracies appear to account 
for the majority of such covariances, although other mechanisms contribute also. This 
paper investigates the origin of NPD state covariance matrices, three different methods 
for remediating these covariances when and if necessary, and the associated effects on the 
Pc estimation process. [View Full Paper] 
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AAS 17-582 

STOCHASTIC DYNAMICS OF AND COLLISION PREDICTION FOR 
LOW ALTITUDE EARTH SATELLITES 

Adam T. Rich,* Kenneth J. Stuart* and William E. Wiesel† 

Air drag factors from earth satellite element sets often show the characteristic near 
Gaussian distribution and autocorrelation exponential decay typical of a first order 
Gauss-Markov process. Assuming the “most current” set of orbital elements are correct, 
earlier elements can be used to construct covariance matrices as a function of prediction 
time into the future. If resolved in cylindrical orbit frame coordinates, these are remarka-
bly structured, essentially showing only in-track error growth. Often the in-track position 
covariance element growth follows a fourth power in time rule, and is apparently forced 
by the uncertainty in the air drag factor. Realizing that almost all error growth under the 
SGP4 model is in track, the Cosmos 2251 / Iridium 33 event is reexamined. While a col-
lision prediction from the last elements shows a minimum miss distance of about 700 me-
ters, those same elements show a closest approach distance of the orbits of only 32 me-
ters. Given large in-track uncertainty, minimum orbit separation may be a much more 
reliable metric for maneuver decisions. [View Full Paper] 
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AAS 17-590 

OPTIMAL COLLISION AVOIDANCE MANEUVERS FOR 
SPACECRAFT PROXIMITY OPERATIONS VIA DISCRETE-TIME 

HAMILTON-JACOBI THEORY 

Kwangwon Lee,* Youngho Eun† and Chandeok Park‡ 

This study presents a sub-optimal control algorithm that implements real-time collision 
avoidance maneuvers for spacecraft in proximity operations. The penalty function for 
avoiding collision with an obstacle is first incorporated into the performance index of a 
typical optimal tracking problem in a discrete-time do-main. Then, the infinite-horizon 
control law is derived by employing generating functions based on the discrete-time 
Hamilton-Jacobi theory without initial guess and iterative procedure. The derived control 
law, which is an explicit function of the states of desired solution and obstacles, allows us 
to avoid collision in real-time. The proposed approach has advantages over the previous 
optimal collision avoidance approaches requiring repetitive procedure and initial guess, 
and/or trajectories of obstacles to be known a priori. Numerical simulations demonstrate 
that the proposed algorithm is suitable for implementing optimal collision-free transfers 
in real-time. [View Full Paper] 
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AAS 17-614 

RELEVANCE OF THE AMERICAN STATISTICAL ASSOCIATION’S 
WARNING ON p-VALUES FOR CONJUNCTION ASSESSMENT 

J. Russell Carpenter,* Salvatore Alfano,† Doyle T. Hall,‡ Matthew D. Hejduk,§ 
John A. Gaebler,** Moriba K. Jah,†† Syed O. Hasan,‡‡ Rebecca L. Besser,§§ 

Russell R. DeHart,§§ Matthew G. Duncan,*** Marissa S. Herron†††  
and William J. Guit‡‡‡ 

On March 7, 2016, the American Statistical Association issued an editorial paper on the 
“context, process, and purpose of p-values.” According to the paper, “the statement artic-
ulates in non-technical terms a few select principles that could improve the conduct or 
interpretation of quantitative science, according to widespread consensus in the statistical 
community.” These principles would appear to have some relevance to the spacecraft 
conjunction assessment community. [View Full Paper] 
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AAS 17-650 

THE EVOLUTION OF SECONDARY OBJECT POSITION IN 
18SCS CONJUNCTION DATA MESSAGES 

Barbara Manganis Braun* 

Satellite owners evaluate conjunctions with on-orbit objects every day, and rely on con-
junction data messages produced by the 18th Space Control Squadron (formerly known 
as JSpOC) to make maneuver decisions. Each conjunction assessment relies on predicting 
the position of both the primary and secondary object at the time of closest approach. 
This paper examines the position predictions of all secondary objects conjuncting with 
three primary satellites over a six-month period. The data illustrates interesting character-
istics of 18SCS secondary object position prediction, including the differences between 
orbital regimes, the impact of increased tracking, and the prevalence of repeating con-
junctions. [View Full Paper] 
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AAS 17-703 

PROBABILITY OF COLLISION ESTIMATION AND OPTIMIZATION 
UNDER UNCERTAINTY UTILIZING SEPARATED 

REPRESENTATIONS 

Marc Balducci* and Brandon A. Jones† 

In crowded orbit regimes due to debris or inoperable satellites, operators of spacecraft 
must confront the possibility of a conjunction with another space object and decide 
whether the risk should be mitigated or accepted. Often, the decision to maneuver or not 
is decided by the probability of collision. This paper presents Separated representations 
for estimating the probability of collision between two satellites, and the design of a col-
lision avoidance maneuver while accounting for propagated uncertainty. Separated repre-
sentations is a polynomial surrogate method that has a computation cost largely linear 
with respect to dimension, allowing the consideration of high-dimension stochastic sys-
tems. [View Full Paper] 
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AAS 17-608 

ONE CLASS OF IO-EUROPA-GANYMEDE TRIPLE CYCLERS 

Sonia Hernandez,* Drew R. Jones* and Mark Jesick*  

Ballistic cycler trajectories that repeatedly encounter the Jovian moons Ganymede, Euro-
pa, and Io are investigated. The 1:2:4 orbital resonance among these moons allows for 
trajectories that periodically fly by the three bodies, and under idealized assumptions re-
peat indefinitely. An initial search method is implemented to determine if the location of 
the moons in a specific geometry can give way to a possible cycler. Lambert’s problem is 
then solved to determine the legs connecting consecutive encounters, allowing a maneu-
ver at periapsis of the encounter if necessary. Families of solutions are classified by syn-
odic period, and conversion to high fidelity model is outlined. [View Full Paper] 
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AAS 17-651 

A TOOL FOR IDENTIFYING KEY GRAVITY-ASSIST 
TRAJECTORIES FROM BROAD SEARCH RESULTS 

James W. Moore,* Kyle M. Hughes,† Alec J. Mudek‡ and James M. Longuski§ 

A tool is presented that identifies desirable trajectory candidates from among tens of 
thousands of gravity-assist trajectories. A broad trajectory search technique creates an 
exhaustive set of possible trajectories to a given planet. From this dataset, our tool reveals 
candidate trajectories with user-defined characteristics. Typical discriminating character-
istics are launch V-infinity, time-of-flight, and delivered mass. Mission planners evaluate 
and plot interesting trajectories from within the tool. Our tool generates catalogs of se-
lected trajectories for further evaluation with higher-fidelity trajectory solvers. This paper 
outlines the key features of the tool and gives examples of typical analyses.  

[View Full Paper] 
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AAS 17-696 

PRACTICAL METHODOLOGIES FOR 
LOW DELTA-V PENALTY, ON-TIME DEPARTURES TO 

ARBITRARY INTERPLANETARY DESTINATIONS FROM A 
MEDIUM-INCLINATION LOW-EARTH ORBIT DEPOT 

Michel Loucks,* Jonathan Goff† and John Carrico‡  

The authors present a 3-burn injection method that enables manned and robotic spacecraft 
to depart for interplanetary destinations from a Low-Earth Orbit propellant depot with 
only minor ΔV penalties. In this paper, the authors discuss related injection methodolo-
gies; illustrate the underlying concept behind this three-burn injection method; discuss 
implications of using this method, including potential mission safety benefits; and present 
some details on estimates of the worst-case ΔV penalty for performing this sort of depar-
ture maneuver, compared with a traditional one-burn departure from a LEO parking orbit.  

[View Full Paper] 
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AAS 17-699 

MISSION DESIGN FOR THE EMIRATES MARS MISSION 

Jeffrey S. Parker,* 
Omar Hussain,† Nathan Parrish‡ and Michel Loucks‡  

The United Arab Emirates is launching the Emirates Mars Mission (EMM) to Mars in 
2020 to explore the atmospheric dynamics of Mars on a global, diurnal, sub-seasonal 
scale. The mission design involves a Type I transfer to Mars, coordinated with many oth-
er simultaneous Mars missions, most of whom share the same network of ground tracking 
stations. The Mars Orbit Insertion places the EMM Observatory, Amal, into a very large, 
elliptical capture orbit. Three Transition to Science Maneuvers are optimized under un-
certainty to transfer the spacecraft into a unique 20,000 km x 43,000 km, ideally shaped 
and oriented to achieve the EMM science objectives. [View Full Paper] 
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AAS 17-708 

ROBUST MINIATURE PROBES FOR 
EXPANDED ATMOSPHERIC PLANETARY EXPLORATION 

Eiji Shibata* 

For future atmospheric planetary exploration, a robust miniature probe can be used to 
provide additional in-situ measurements, while keeping consequential costs and risks 
low. These probes take advantage of recently-developed technologies in the small satel-
lite field and apply those technologies to atmospheric probe entry. These probes arrive at 
an atmospheric body with a cruise stage—all delivered by a larger, primary spacecraft. 
The cruise stage serves to provide additional pointing accuracy for entry without using 
the fuel onboard the primary spacecraft. [View Full Paper] 
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AAS 17-728 

BALLISTIC AND HIGH-THRUST TRAJECTORY OPTIONS TO 
URANUS CONSIDERING 50 YEARS OF LAUNCH DATES 

Alec J. Mudek,* James W. Moore,† Kyle M. Hughes,‡ 
Sarag J. Saikia§ and James M. Longuski** 

Given that Uranus is a high-priority scientific target, ballistic and chemical trajectory op-
tions to the ice giant are investigated for launch dates spanning 50 years. A total of 89 
distinct gravity-assist paths are considered for ballistic trajectories and—for cases where 
no ballistic trajectories exist—a single deep space maneuver (DSM) up to 3 km/s may be 
applied. For each launch year, the most desirable trajectory is identified and cataloged 
based on time of flight (up to 15 years), total ΔV cost (DSM and capture maneuver), arri-
val Vꝏ, and delivered payload. The Atlas V 551, Delta IV Heavy, and SLS Block 1B are 
considered as launch vehicles. The trajectories are found using a patched-conic propaga-
tor with an analytical ephemeris model. Jupiter is unavailable as a gravity-assist body un-
til the end of the 2020s but alternative gravity-assist paths exist, providing feasible trajec-
tories even in years when Jupiter is not available. A probe-and-orbiter mission to Uranus 
is feasible with the Delta IV Heavy with approximately 13-year flight times and with the 
Atlas V 551 with approximately 14.5-year flight times. Using the SLS Block 1B, the 
flight times are around 10 to 11 years but can be as low as 7.5. [View Full Paper] 
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AAS 17-777 

LOW-COST OPPORTUNITY FOR MULTIPLE TRANS-NEPTUNIAN 
OBJECT RENDEZVOUS AND ORBITAL CAPTURE 

Glen E. Costigan,* Brenton W. Ho,* Nicole Nutter,*  
Katherine Stamper* and James E. Lyne† 

New Horizons remains the only spacecraft ever to visit a trans-Neptunian object and 
while the probe will continue to intercept more objects in the Kuiper Belt, the outer 
reaches of the solar system remain woefully underexplored. The mission proposed herein 
allows three separate New Horizons-type spacecraft to reach three trans-Neptunian object 
systems with the use of a single launch vehicle. This was accomplished by performing a 
ΔVEGA maneuver at the beginning of the trajectories which reduced the required launch 
C3 from over 100 m2/s2 to under 30 m2/s2. Two of the proposed target systems, binary 
dwarf planet 2002 UX25 and binary cubewano system 1998 WW31, intercept their as-
signed spacecraft 17.3 and 25.3 years after launch, respectively. The relative velocities 
between the spacecraft and the TNO systems were constrained to allow for meaningful 
data collection by the onboard instrumentation suites. The third spacecraft is equipped 
with a high-thrust engine which enables it to capture into orbit around the trinary TNO 
system 1999 TC36 26.3 years after launch. [View Full Paper] 
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AAS 17-804 

ENCELADUS SAMPLE RETURN MISSION 

Rekesh M. Ali,* Andrew S. Bishop,* Braxton Brakefield,* Shelby Honaker,* 
Brier Taylor* and James E. Lyne† 

The Cassini mission has confirmed that Enceladus has a subsurface liquid ocean and hy-
drothermal vents that may support life, as well as geysers that eject water from beneath 
the frozen surface into space. This provides an unusual opportunity to sample the interior 
without necessitating a landing. In this study, a novel, flyby sample return mission is ex-
amined, using a previously published free-return interplanetary trajectory. We propose 
the use of multiple small pods that would be released from a carrier bus prior to the En-
celadus encounter. These pods would collect ejected material during flyby and would 
each return to Earth independently, thereby reducing or eliminating the possibility of a 
single point failure after the pod release. The pods would enter Earth’s atmosphere at a 
speed of 15.7 km/s, by far the fastest Earth entry to date. The small size of the pods tends 
to reduce their ballistic coefficient, thereby making such a high entry speed potentially 
feasible. [View Full Paper] 
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AAS 17-847 

OPTIMIZING PARKING ORBITS FOR 
ROUNDTRIP MARS MISSIONS 

Min Qu,* Raymond G. Merrill,† Patrick Chai‡ and David R. Komar§ 

A roundtrip Mars mission presents many challenges to the design of a transportation sys-
tem and requires a series of orbital maneuvers within Mars vicinity to capture, reorient, 
and then return the spacecraft back to Earth. The selection of a Mars parking orbit is cru-
cial to the mission design; not only can the parking orbit choice drastically impact the ΔV 
requirements of these maneuvers but also it must be properly aligned to target desired 
surface or orbital destinations. This paper presents a method that can optimize the Mars 
parking orbits given the arrival and departure conditions from heliocentric trajectories, 
and it can also enforce constraints on the parking orbits to satisfy other architecture de-
sign requirements such as co-planar sub-periapsis descent to planned landing sites, due 
east or co-planar ascent back to the parking orbit, or low cost transfers to and from Pho-
bos and Deimos. [View Full Paper] 
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AAS 17-849 

PATH PLANNING TO A REACHABLE STATE USING 
INVERSE DYNAMICS AND MINIMUM CONTROL EFFORT 

BASED NAVIGATION FUNCTIONS 

Paul Quillen,* Josué Muñoz† and Kamesh Subbarao‡ 

The purpose of this paper is to present a new path-planning algorithm for planetary ex-
ploration rovers that will guide the vehicle safely to a reachable state. In particular, this 
work will make use of a special class of artificial potential functions called navigation 
functions which are guaranteed to be free of local minimum. The construction of the nav-
igation functions in this work is motivated by the grid-based wavefront expansion method 
but differs in that the contour levels are defined in terms of the control effort of the sys-
tem. Two new methods will be introduced in this paper for defining the navigation func-
tion. The first method will generate a minimum control effort path plan and the second 
method will be based on an inverse dynamics approach. Each of the control effort based 
methods will generate a path plan that will guide the rover’s approach towards an objec-
tive reachable state. Finally, a stable backstepping controller is implemented to track a 
trajectory defined along the path plan to the rover’s objective. [View Full Paper] 
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AAS 17-554 

TREATMENT OF MEASUREMENT VARIANCE FOR STAR 
TRACKER-BASED ATTITUDE ESTIMATION 

Erik A Hogan* and Byoungsam (Andy) Woo† 

In this paper, proper treatment of measurement variance for star tracker-based attitude 
estimation routines is considered. Specifically, a modified Rodrigues parameter (MRP) 
additive extended Kalman filter (EKF) is used in combination with one or more star 
trackers and a rate gyro to perform attitude estimation. In prior work, the differences be-
tween noise characteristics about the three star tracker sensing axes are not considered, 
and the effects of measurement latency are not addressed. Considering these effects, as 
well as star tracker alignments, the correct way to compute the measurement variance for 
the measurement residuals in the additive MRP EKF is provided. The results illustrate the 
improved performance gained over classical results and highlight the importance of 
properly calculating measurement variance, especially for agile spacecraft.  

[View Full Paper] 
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AAS 17-591 

TUNING THE SOLAR DYNAMICS OBSERVATORY 
ONBOARD KALMAN FILTER 

Julie Halverson (formerly Thienel),* Rick Harman,†  
Russell Carpenter‡ and Devin Poland§ 

The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun-pointing 
semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous ob-
servations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digi-
tal sun sensor, and three two-axis inertial reference units (IRU). The IRUs are tempera-
ture sensitive and were designed to operate in a stable thermal environment. Due to bat-
tery degradation concerns the IRU heaters were not used on SDO and the onboard filter 
was tuned to accommodate the noisier IRU data. Since launch currents have increased on 
two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar 
to SDO’s indicated the heaters would have negligible impact on battery degradation, so in 
2016 a decision was made to turn the heaters on. This paper presents the analysis and re-
sults of updating the SDO filter tuning parameters with the IRUs now operating in their 
intended thermal environment. [View Full Paper] 
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AAS 17-637 

ADVANCED ATTITUDE DETERMINATION ALGORITHM FOR 
ARASE: PRELIMINARY MISSION EXPERIENCE 

Halil Ersin Soken,* Shin-ichiro Sakai,† Kazushi Asamura,‡  
Yosuke Nakamura§ and Takeshi Takashima** 

JAXA’s ERG (Exploration of Energization and Radiation in Geospace) Spacecraft, 
which is nicknamed Arase, was launched on 20 December 2016. Arase is a spin-
stabilized and Sun-oriented spacecraft. Its mission is exploring how relativistic electrons 
in the radiation belts are generated during space storms. Two different on-ground attitude 
determination algorithms have been designed for the mission: a conventional straightfor-
ward algorithm that inherits from old missions and an advanced new algorithm. This pa-
per discusses the design of the advanced attitude determination algorithm and presents 
the preliminary attitude estimation results for the spacecraft that were obtained after the 
launch. Results are presented along with the encountered challenges and suggested solu-
tions. [View Full Paper] 
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AAS 17-673 

SPACECRAFT ATTITUDE ESTIMATION USING 
UNSCENTED KALMAN FILTERS, REGULARIZED PARTICLE 

FILTER AND EXTENDED Hꝏ FILTER 

William R. Silva,* Roberta V. Garcia,† Hélio K. Kuga‡ and Maria C. Zanardi§ 

In this work, the attitude determination and the gyros drift estimation will be described 
for nonlinear systems using the Extended Kalman Filter (EKF), Extended Hꝏ Filter 
(EHꝏF), Second-Order Extended Hꝏ Filter (SOEHꝏF), Unscented Kalman Filter (UKF) 
and Regularized Particle Filter (RPF). An analysis of these estimation methods will be 
done, verifying which of them present better precision in such study. The attitude model 
is described by quaternions and the attitude sensors available are two DSS (Digital Sun 
Sensors), two IRES (Infrared Earth Sensor), and one triad of mechanical gyros. The ap-
plication uses the simulated measurement data for orbit and attitude of the CBERS-2 
(China Brazil Earth Resources Satellite) which has polar sun-synchronous orbit with an 
altitude of 778km, making about 14 revolutions per day. In this orbit, the satellite crosses 
the equator line always at the same local time, around 10:30 am. This dynamics allows 
the same conditions of solar illumination to be obtained during the acquisition of images. 
The simulated measurements of the CBERS-2 were provided by the inhouse package 
PROPAT, a Satellite Attitude and Orbit Toolbox for Matlab. The results in this work 
show that one can reach accuracies in attitude determination within the prescribed re-
quirements, besides providing estimates of the gyro drifts which can be further used to 
enhance the gyro error model. [View Full Paper] 
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AAS 17-723 

SPACECRAFT HIGH ACCURACY ATTITUDE ESTIMATION: 
PERFORMANCE COMPARISON OF 
QUATERNION BASED EKF AND UF 

Divya Bhatia* 

Demand for high accuracy attitude estimation of the order better than tens of milli-arcsec 
is growing for the future spacecraft missions. To this end, this paper compares the per-
formance characteristics of quaternion based Extended Kalman filter (EKF) and Unscent-
ed filter (UF) for three axes attitude estimation of IRASSI spacecraft. Quaternions are 
appealing parameters for attitude representation owing to their bilinear kinematic equa-
tion and singularity-free property. Performance parameters compared are the pointing 
accuracy, robustness and convergence of both the filters for the fusion of a high accuracy 
three-axis gyroscope and two simultaneously operating high accuracy star trackers.  

[View Full Paper] 
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AAS 17-767 

INVERSE DYNAMICS PARTICLE SWARM OPTIMIZATION 
APPLIED TO BOLZA PROBLEMS 

Dario Spiller,* Robert G. Melton† and Fabio Curti‡ 

The Inverse-dynamics Particle Swarm Optimization has already been successfully ap-
plied to several minimum-time problems. This numerical technique based on swarm in-
telligence is applied to solve optimal control problems formulated with the differentially 
flat approach. The advantages of this method lie in the global search ability of the opti-
mizer and the reduction of the independent functions due to the exploitation of the differ-
ential flatness. However, it is known that optimal control problems formulated with either 
differential inclusion or differential flatness can lead to nonconvex problems with unde-
sirable numerical properties. This paper in intended to show that, considering difficult 
problems with nonconvex state constraints and nonconvex cost functions, the proposed 
numerical technique can lead to satisfactory near-optimal solutions. Minimum-time, min-
imum-energy and minimum-effort maneuvers are addressed considering a constrained 
slew-maneuver as a test case. [View Full Paper] 
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AAS 17-553 

A KAM TORI ALGORITHM FOR EARTH SATELLITE ORBITS 

William E. Wiesel* 

This paper offers a new approach for constructing Kolmogorov - Arnold - Moser (KAM) 
tori for orbits in the full potential for a non-spherical planet. The Hamilton - Jacobi equa-
tion is solved numerically by a Newton-Rhapson iteration, achieving convergence to ma-
chine precision, and still retaining literal variable dependence. Similar iteration methods 
allow correcting the orbital frequencies, and permit the calculation of the state transition 
matrix for the full problem. Some initial numerical examples are offered.  

[View Full Paper] 
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AAS 17-572 

RELATIVE EQUILIBRIA FOR THE ROTO-ORBITAL DYNAMICS OF 
A RIGID BODY AROUND A SPHERE 

Francisco Crespo* and Sebastián Ferrer† 

We study the roto-orbital motion of an arbitrary rigid body and a sphere, which is as-
sumed to be much more massive than the triaxial body. The associated dynamics to this 
system, which consists of a normalized Hamiltonian with respect to the fast angles (par-
tial averaging), is investigated making use of variables referred to the total angular mo-
mentum. The first order approximation of this model is integrable. We carry out the anal-
ysis of the relative equilibria, which hinges principally in the dihedral angle between the 
orbital and rotational planes and the ratio among the momenta ρ = (B – A)/(2C – B – A). 
In particular, the dynamics of the body frame, though formally given by the classical Eu-
ler equations, it experiences changes of stability in the principal directions related to the 
roto-orbital coupling. We find a new type of special-shaped bodies leading to a family of 
relative equilibria connected to the unstable equilibria of the free rigid body.  

[View Full Paper] 
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AAS 17-579 

APPLICATION OF MULTI-HYPOTHESIS SEQUENTIAL 
MONTE CARLO FOR BREAKUP ANALYSIS* 

W. R. Faber,† Waqar Zaidi,‡ Islam I. Hussein,† Christopher W. T. Roscoe,† 
Matthew P. Wilkins† and Paul W. Schumacher, Jr.§ 

As more objects are launched into space, the potential for breakup events and space ob-
ject collisions is ever increasing. These events create large clouds of debris that are ex-
tremely hazardous to space operations. Providing timely, accurate, and statistically mean-
ingful Space Situational Awareness (SSA) data is crucial in order to protect assets and 
operations in space. The space object tracking problem, in general, is nonlinear in both 
state dynamics and observations, making it ill-suited to linear filtering techniques such as 
the Kalman filter. Additionally, given the multi-object, multi-scenario nature of the prob-
lem, space situational awareness requires multi-hypothesis tracking and management that 
is combinatorially challenging in nature. In practice, it is often seen that assumptions of 
underlying linearity and/or Gaussianity are used to provide tractable solutions to the mul-
tiple space object tracking problem. However, these assumptions are, at times, detri-
mental to tracking data and provide statistically inconsistent solutions. The goal of this 
paper is to provide a tractable solution to the multiple space object tracking problem that 
is statistically rigorous in the fact that simplifying assumptions of the underlying proba-
bility density function are relaxed and heuristic methods for hypothesis management are 
avoided. This is done by implementing Sequential Monte Carlo (SMC) methods for both 
nonlinear filtering as well as hypothesis management. This paper presents an expansion 
from a single birthed space object tracking framework to multiple space object tracking 
with applications to space debris and the tracking of Resident Space Object (RSO) 
breakup events. [View Full Paper] 
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AAS 17-581 

A METHODOLOGY FOR REDUCED ORDER MODELING AND 
CALIBRATION OF THE UPPER ATMOSPHERE 

Piyush M. Mehta* and Richard Linares† 

Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of 
satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse 
LEO is critical to Space Situational Awareness. Atmospheric models used for orbital drag 
calculations can be characterized either as empirical or physics-based (first principles 
based). Empirical models are fast to evaluate but offer limited real-time predic-
tive/forecasting ability, while physics-based models offer greater predictive/forecasting 
ability but require dedicated parallel computational resources. Also, calibration with ac-
curate data is required for either type of models. This paper presents a new methodology 
based on proper orthrogonal decomposition (POD) towards development of a quasi-
physical, predictive, reduced order model that combines the speed of empirical and the 
predictive/forecasting capabilities of physics-based models. The methodology is devel-
oped to reduce the high-dimensionality of physics-based models while maintaining its 
capabilities. We develop the methodology using the Naval Research Lab’s MSIS model 
and show that the diurnal and seasonal variations can be captured using a small number 
of modes and parameters. We also present calibration of the reduced order model using 
the CHAMP and GRACE accelerometer-derived densities. Results show that the method 
performs well for modeling and calibration of the upper atmosphere. [View Full Paper] 
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AAS 17-613 

A NEW CONCEPT OF STABILITY IN ORBIT PROPAGATION, 
USEFUL FOR QUANTIFYING NUMERICAL ERRORS 

Javier Roa,* Hodei Urrutxua† and Jesús Peláez‡ 

We present the concept of topological stability in the numerical propagation of orbits, and 
show how it results in a useful new method for measuring the global numerical error of 
an orbit propagation. The concept applies to any problem in orbital dynamics. Moreover, 
it can be extended to any three-dimensional system of differential equations of second 
order. In order to assess the topological stability of a given integration a special metric is 
introduced, which can be used to estimate the numerical errors robustly. The method is 
particularly well suited for dealing with strongly perturbed and chaotic systems. The con-
struction is based on the constraint imposed by the Hopf map that supports the Kustaan-
heimo-Stiefel transformation. Generic concepts of stability are translated to KS space.  

[View Full Paper] 
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AAS 17-628 

ORBITAL LIFETIME ANDCOLLISION RISK REDUCTION FOR 
TUNDRA DISPOSAL ORBITS 

Alan B. Jenkin,* John P. McVey,† James R. Wilson,‡  
Isabella Acevedo-Rodriguez§ and Marlon E. Sorge** 

Tundra orbits are high-inclination, moderately eccentric, 24-hour period orbits. A previ-
ous paper by the authors showed that eccentricity excursions due to luni-solar gravity can 
be used to reduce disposal orbit lifetime and long-term collision risk. This paper presents 
results of a more extensive follow-on study. TRACE propagations were performed to de-
termine variation of orbital lifetime with initial epoch and orbital parameters. The Aero-
space Debris Environment Projection Tool (ADEPT) suite was used to determine colli-
sion risk with inactive objects and geosynchronous (GEO) operational satellites. Results 
show that, when orbital lifetime is reduced below 200 years, collision probability with 
both inactive objects and GEO operational satellites is well below the 0.001 threshold in 
U.S. orbital debris mitigation rules and well below the collision risk for near-GEO dis-
posal orbits and 25-year lifetime low Earth orbits (LEO). The maximum effective total 
time spent by a Tundra satellite in LEO is well below the recommended limit of 25 years 
in international guidelines, and the maximum effective total time spent in the GEO alti-
tude range is well below the orbital lifetime. The use of a Tundra disposal orbit would 
avoid substantial propellant cost required to move to a disposal orbit that clears GEO. 
Substantial additional propellant can be saved by allowing Tundra orbit eccentricity and 
argument of perigee to freely drift during mission if the system is designed to accommo-
date the resulting variation in mission metrics such as range and range rate.  
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AAS 17-659 

ANALYTICAL STATE PROPAGATION OF OBLATE SPHEROIDAL 
EQUINOCTIAL ORBITAL ELEMENTS FOR VINTI THEORY 

Ashley D. Biria* and Ryan P. Russell† 

Equinoctial orbital elements have been generalized from spherical geometry to the oblate 
spheroidal geometry of Vinti theory, a satellite theory that accounts exactly for oblateness 
and optionally J3. For the symmetric potential, these nonsingular elements resolve the 
usual problems found in the classical elements associated with angle ambiguities. But 
their introduction is incomplete without developing an analytical solution in these 
nonsingular elements. In the present study, state propagation in time is investigated as a 
separate and self-contained endeavor, including derivations of the equinoctial constants 
of the motion and techniques to solve a generalized Kepler’s equation. Multiple examples 
are presented. [View Full Paper] 
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AAS 17-756 

CELL-MAPPING ORBIT SEARCH FOR MISSION DESIGN AT 
OCEAN WORLDS USING PARALLEL COMPUTING 

Dayung Koh,* Rodney L. Anderson† and Ivan Bermejo-Moreno‡ 

In this study, a cell-mapping approach is applied to various systems in the circular re-
stricted three-body problem to obtain a rapid understanding of the global dynamics. The 
method is generic for various classes of problems including non-autonomous systems and 
different types of periodic solutions. The cell-mapping method also does not require pre-
viously known solutions as inputs, which is typical of continuation approaches, and no 
symmetric constraints are imposed. This method is especially applicable to a systematic 
periodic orbit search over a region of interest at one-period of integration. As additional 
strengths of the method, multiple-period solutions and bifurcation studies can be easily 
performed. In this study, the initial orbit search is applied to obtain an understanding of 
the orbit trade space at Europa and Enceladus. [View Full Paper] 
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AAS 17-827 

NONLINEAR DIFFERENTIAL EQUATION SOLVERS VIA 
ADAPTIVE PICARD-CHEBYSHEV ITERATION: 

APPLICATIONS IN ASTRODYNAMICS 

John L. Junkins* and Robyn M. Woollands† 

We present an adaptive approach for solving initial value problems using an accelerated 
Picard-Chebyshev method. The new algorithm retains the large convergence domain typ-
ical of Picard iteration, and importantly, accelerated terminal convergence typical of qua-
si-linearization. This approach is implemented for both first order and second order sys-
tems of differential equations. Including the error feedback terms leads to about a factor 
of two decrease in the number of iterations required for Picard convergence to near ma-
chine precision. We discuss the subtle but significant distinction between integral quasi-
linearization for systems that are naturally first order, systems that are naturally second 
order (but re-arranged to be integrated in first order form), and systems that are naturally 
second order and integrated using a kinematically consistent modified Picard-Chebyshev 
iteration in cascade form. The adaptation technique introduced is self-tuning and adjusts 
the size of time interval segments and the number of nodes per segment automatically to 
achieve near-maximum efficiency. The technique also utilizes recent insights on local 
force models and adaptive force models that take advantage of the fixed point nature of 
Picard iteration. We demonstrate enhanced performance by solving benchmark problems 
in astrodynamics, specifically gravitationally perturbed near-Earth orbits. We compare 
the results with those obtained using an 8th order Gauss-Jackson integrator, a 12th order 
Runge-Kutta integrator and MATLAB’s ODE45. The adaptive algorithm is more effi-
cient than these competing methods, implemented as serial algorithms, while maintaining 
user prescribed accuracy tolerance ranging from engineering precision to near machine 
precision over at least seven weeks of orbit propagation. The method presented is well-
suited for parallelization whereas the step-by-step methods are poorly suited to parallel-
ization. [View Full Paper] 
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AAS 17-584 

INVESTIGATION OF TRANSFERS TO STABLE SPACECRAFT 
ORBITS IN A CR3BP MODEL OF A BINARY ASTEROID SYSTEM 

Kristen Tetreault,* Ann-Catherine Bokinsky,†  
Shane Ross‡ and Jonathan Black§ 

A scenario of a spacecraft maneuvering to enter an orbit around the main body of a bina-
ry asteroid system is analyzed. In this simulation, a low thrust engine is used on a space-
craft entering this three-body system via a series of finite-time burns. An optimization 
problem is formulated to control the burn characteristics of the spacecraft as it attempts to 
enter a stable orbit about the primary body from a parking trajectory about the asteroid 
system. To ensure a realistic model, the Didymos 65803 binary asteroid from NASA’s 
Asteroid Impact and Deflection Assessment mission will serve as the binary system. A 
transfer trajectory was achieved while optimizing for spacecraft stability with two burns 
executed. [View Full Paper] 
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AAS 17-640 

OPTIMIZATION PROCESS OF TARGET SELECTION FOR 
MULTIPLE ASTEROID ENCOUNTERS IN THE MAIN BELT 

Alena Probst,* Oliver Ermertz† and Roger Förstner‡ 

The relevancy of the research on asteroids is mirrored in the growth and progress of con-
nected, scientific fields over the last two centuries. The results obtained link the 
knowledge of their origin and development to the two big questions in science: How did 
life develop? and How did the solar system evolve to its current appearance? Hence, as-
teroid characterization missions are more important than ever. As the asteroid population 
is very diverse, a broad, close-up investigation of many different objects is recommended 
to define differences as well as similarities. The results serve as constraints and boundary 
conditions on the search for further insights. One efficient realization are missions that 
target several objects in a row, hopping from one to the next. With the amount of aster-
oids discovered, target selection becomes a challenge. 

In this paper, two analyses are presented. First, the derivation of suitable pruning criteria 
for the database of asteroid bodies is presented. The analysis is based on a generic acces-
sibility of virtual asteroids departing from a parking orbit in the main belt. As a second 
step, two target sequence optimization methods for multiple asteroid rendezvous missions 
are introduced and compared. The asteroid tour starts from and ends at the parking orbit 
used for the derivation of the pruning criteria. In order to enhance the flexibility and au-
tomation, the sequential target selection is based on solely the S/C departure state in posi-
tion and time as well as the remaining fuel stock. [View Full Paper] 
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AAS 17-662 

SELECTED TRAJECTORY OPTIONS TO 2016 HO3 

Brian D. Kaplinger* and Anthony Genova† 

This paper presents the results of three different search strategies for trajectories to 2016 
HO3 in the timeframe 2019-2028. Since many Lambert solvers result in impulses to this 
target exceeding 5.5 km/s due to the high solar inclination, a strategy utilizing the gravity 
of the Earth was proposed. The initial model used for sample trajectories is the circular, 
restricted, three-body problem (CR3BP) between the Sun and Earth-Moon barycenter. 
Trajectories were discovered near the stable manifolds for osculating periodic orbits to 
2016 HO3, transit through L1/L2, and via Venus gravity assist after passage through L1. 
Selected examples are modeled in higher fidelity, and the Earth departure phase is ana-
lyzed. Some design considerations for such a mission are briefly considered. The trajecto-
ries proposed include impulses as low as 3.5 km/s for rendezvous, and 1.1 km/s for flyby, 
so far. Trajectory trades and further computation are ongoing. [View Full Paper] 
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AAS 17-698 

ROBUST OPTIMIZATION OF 
DESCENT TRAJECTORIES ON IRREGULAR-SHAPED BODIES IN 

THE PRESENCE OF UNCERTAINTY 

Pablo Machuca,* Daniel González-Arribas,† David Morante-González,†  
Manuel Sanjurjo-Rivo‡ and Manuel Soler‡  

High levels of uncertainty are associated to the characterization of the environment 
around small bodies in the Solar System. In an effort to develop efficient methods to con-
sider uncertainty in the analysis of missions to irregular-shaped bodies, the problem of 
robust and efficient optimization of descent trajectories in the presence of uncertainty is 
addressed in this paper. The gravitational field around the body is modeled using an op-
timized mascons approach, for computational efficiency and reduced approximation er-
ror. Random processes in the system are discretized and approximated using stochastic 
quadrature rules, which allow for efficient computation of relevant statistical quantities in 
the system. A single optimal control history is then solved for and applied to all discrete 
cases of the uncertain system. A general formulation for the problem of optimal descent 
on irregular-shaped bodies is developed, and the described methodology is applied to the 
problem of minimum impact velocity with uncertainty in the total mass of the body.  

[View Full Paper] 
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AAS 17-721 

EVALUATION OF A RAPID TRANSFER DESIGN APPROACH FOR 
SMALL BODY APPLICATIONS* 

Benjamin F. Villac† and Rodney L. Anderson‡ 

This paper discusses the challenges of applying a periodic orbit based rapid trajectory 
design method to small body orbiters. Using a sample mission scenario to asteroid EV5, a 
transfer design method based on pre-computed elementary transfers is applied to various 
orbital regimes that range from distant encounter to close-proximity operations. The 
computation of the elementary transfer dataset and the application of the associated com-
binatorial optimization highlight the key challenges of this problem, such as the down-
selection of intermediary orbits and the application of constraints to obtain relevant trans-
fers. [View Full Paper] 
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AAS 17-731 

ORBIT DESIGN FOR A PHOBOS-DEIMOS CYCLER MISSION 

Bolys Sabitbek* and Brian C. Gunter† 

Little is known about the Martian moons Phobos and Deimos, even though they have the 
potential to provide insight into the evolution of the Martian system, and could potential-
ly serve as a staging site for a future Mars manned mission. While attempts to visit Pho-
bos with dedicated missions have been attempted, to date none have been successful, and 
no dedicated mission to Deimos has been flown. As such, much of what is known about 
the structure and composition of either moon comes from a small collection of images. 
This study explores a class of stable cycler orbits that could visit both moons on a regular 
cadence, and can be tuned to fly-by one moon more frequently, or to vary the ground 
track coverage to obtain improved surface coverage. While the orbits described can be 
reached by a dedicated spacecraft with sufficient delta-V for a Mars insertion, the motiva-
tion here is that the spacecraft is already in an initial insertion orbit, such as a small-
satellite rideshare on an existing Mars mission. Under this assumption, the results pre-
sented illustrate that the exploration of both Phobos and Deimos can be achieved with a 
spacecraft with capabilities of modern nanosatellites (cubesats). [View Full Paper] 
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AAS 17-762 

ON THE USE OF MEAN MOTION RESONANCES TO EXPLORE 
THE HAUMEA SYSTEM 

Diogo M. Sanchez* and Antonio F. B. A. Prado† 

In this work, Mean Motion Resonances (MMR) are used to create highly eccentric co-
orbital orbits with Namaka, the inner moon of the dwarf planet Haumea. We found a re-
gion of instability nearby Namaka, caused by the quasi-super position of the critical semi-
major axis of Haumea-Namaka (23,576.573 km) and Haumea-Hi’iaka (22,422.929 km). 
These orbits need to be retrograde, since prograde orbits cross the region of instability 
due to the variation of their semi-major axis. We used the method of the integral of the 
disturbing acceleration to analyze the region of instability. [View Full Paper] 
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AAS 17-564 

MANEUVER OPERATIONS DURING JUNO’S APPROACH, 
ORBIT INSERTION, AND EARLY ORBIT PHASE 

Paul W. Stumpf,* Ram S. Bhat* and Thomas A. Pavlak*  

The Juno spacecraft was launched on August 5, 2011 for a 1795-day journey to Jupiter, 
and arrived on July 5, 2016 with the successful Jupiter Orbit Insertion (JOI) maneuver. 
This paper will discuss the maneuver operations that took place starting from the Jupiter 
approach phase (specifically TCM11 on February 3, 2016) through JOI, and the first year 
of Juno orbital operations through OTM07. [View Full Paper] 
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AAS 17-573 

JUNO TRAJECTORY REDESIGN FOLLOWING 
PRM CANCELLATION* 

Thomas A. Pavlak,† Jennie R. Johannesen† and John J. Bordi‡ 

In October 2016, the Juno spacecraft was operating in 53.5-day capture orbits and final 
preparations were underway for a Period Reduction Maneuver (PRM) to achieve the 
planned 14-day science orbits. However, one week before PRM execution, a main engine 
propulsion system anomaly prompted an indefinite PRM delay and immediate updates to 
the Juno reference trajectory. This paper outlines stop-gap trajectory design activities 
immediately following PRM delay and longer-term trajectory redesign considerations 
including various possible PRM epochs, orbit period, longitude grid characteristics, and 
eclipse avoidance strategies that culminated in the decision to cancel PRM and adopt a 
new 53-day reference trajectory. [View Full Paper] 
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AAS 17-595 

JUNO ORBIT DETERMINATION EXPERIENCE DURING 
FIRST YEAR AT JUPITER* 

Shadan Ardalan,† John Bordi,‡ Nicholas Bradley,§ Davide Farnocchia,§ 
Yu Takahashi§ and Paul Thompson§  

The Juno spacecraft successfully inserted into a polar orbit around Jupiter on 5-July-
2016. Since the Jupiter Orbit Insertion (JOI) maneuver, Juno has completed six orbits 
around Jupiter. The mission plan at the time of JOI was for Juno to perform two 53.5-day 
capture orbits before executing a Period Reduction Maneuver (PRM) to place the space-
craft into its intended 14-day science orbit. This maneuver was canceled due to a concern 
with the propulsion system. As a result, the Juno spacecraft will remain in its longer orbit 
period for rest of its mission. This paper discusses the Navigation Team’s experience: the 
orbit determination strategy and how it changed due to the cancellation of the PRM, chal-
lenges fitting the data during perijove, and how we reconstructed the trajectory during 
Juno’s first year in orbit. [View Full Paper] 
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AAS 17-596 

CASSINI MANEUVER EXPERIENCE THROUGH THE FINAL 
TARGETED TITAN FLYBY AND THE GRAND FINALE 

Sean V. Wagner,* Yungsun Hahn,† Sonia Hernandez,† Frank E. Laipert,† 
Powtawche N. Valerino,† Mar Vaquero† and Mau C. Wong†  

Jet Propulsion Laboratory, California Institute of Technology. 

Amassing valuable scientific information about the Saturnian system for 13 years, the 
Cassini spacecraft is now in the last phase of its mission. The Grand Finale, a series of 22 
orbits with Cassini passing through a gap between Saturn’s innermost ring and its upper 
atmosphere, began after the last targeted Titan flyby on April 22, 2017 and ends with the 
spacecraft plunging into Saturn on September 15, 2017. This paper reports on the maneu-
vers performed to achieve the final targeted Titan encounter and the maneuvers used to 
maintain the Grand Finale orbits. [View Full Paper] 

 

 

 

                                                                 
* Corresponding Author, member of the Flight Path Control Group and the Cassini Navigation Team, Mailing Address: 
Jet Propulsion Laboratory, Mail Stop 230-110, 4800 Oak Grove Drive, Pasadena, California 91109, USA. E-mail: 
Sean.V.Wagner@jpl.nasa.gov. Tel: (818) 393-5972; Fax: (818) 393-4215. 
† Authors are members of the Flight Path Control Group and the Cassini Navigation Team, Jet Propulsion Laboratory, 
California Institute of Technology, Pasadena, California 91109, USA. 

149

http://www.univelt.com/book=6553


  

AAS 17-625 

OPTICAL NAVIGATION DURING CASSINI’S SOLSTICE MISSION 

Kevin Criddle,* Julie Bellerose,† Dylan Boone,† Rodica Ionasescu,† 
William Owen,† Duane Roth† and Zahi Tarzi†  

Jet Propulsion Laboratory, California Institute of Technology. 

After nearly twenty years in flight, Cassini’s mission at Saturn will conclude as it pur-
posely dives into Saturn’s atmosphere on September 15, 2017. Primarily to avoid moons 
potentially harboring conditions for life and with propellant very low, the intentional 
plunge into the atmosphere was set in motion years ago. We take this opportunity to give 
an overview of the optical navigation and its roles throughout the mission. The paper de-
scribes the navigation process and the evolution of optical navigation over the past thir-
teen years. The last equatorial phase of the Cassini mission was particularly challenging 
for the OD team as the Saturn system was not being estimated anymore, and it had been a 
few years since the last icy moon flybys. Science pictures of Enceladus one month prior 
to the Enceladus encounters confirmed the moon’s position to be in good agreement with 
the Saturn system dynamical modeling used. This reduced Enceladus’s absolute uncer-
tainty by a factor of three, less than 1 km, and gave confidence the navigation team could 
achieve acceptable flybys and meet science objectives. [View Full Paper] 
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AAS 17-633 

INITIAL JUPITER ORBIT INSERTION AND PERIOD REDUCTION 
MANEUVER PLANS FOR JUNO 

Jennie R. Johannesen,* Thomas A. Pavlak* and John J. Bordi† 

This paper describes the initial plans for the New Frontiers Juno mission at Jupiter. It in-
cludes the considerable contingency planning for mission recovery if the Jupiter Orbit 
Insertion (JOI) burn to place Juno into a large capture orbit were interrupted or terminat-
ed on a burn timer setting, and the options for the mission if the Period Reduction Ma-
neuver (PRM) burn to achieve the final orbit period were terminated early. The analyses 
were based on the assumption that 14-day orbits were the desired operational orbit peri-
od. [View Full Paper] 
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AAS 17-714 

JUICE: WHEN NAVIGATION DELTA-V COST IS REDUCED 
VIA TOUR REDESIGN 

Arnaud Boutonnet,* Amedeo Rocchi† and Johannes Schoenmaekers‡ 

JUICE is the next ESA L-class mission towards Jupiter and its Galilean moons. After 
capture the spacecraft is injected into a series of Ganymede resonant transfers aiming at 
preparing the Europa science phase. The navigation of the Jupiter insertion is very costly 
due to many sources of uncertainties. The navigation DeltaV cost is usually reduced 
through optimal placement of stochastic manoeuvres or combined determinis-
tic/stochastic manoeuvres. This paper presents an innovative approach allowing for a re-
duction of the DeltaV via the optimal selection among a set of modified tours. In other 
words deterministic and stochastic DeltaVs are optimised together. [View Full Paper] 
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AAS 17-563 

THE SSL-100: ADCS FOR THE NEXT GENERATION OF 
LOW-COST, AGILE LEO SPACECRAFT 

Erik A. Hogan,* Michael Homer† and Byoungsam (Andy) Woo‡ 

To support increasing demand in the 75-750 kilogram class of satellites, the SSL-100 bus 
was developed from the ground up. In contrast to the typical large geostationary satellites 
that SSL is known for, the SSL-100 is intended to serve as a platform for a variety of ag-
ile LEO mission profiles that require a high level of autonomy at a low cost point. In this 
paper, we highlight our approach to the design of the attitude determination and control 
system (ADCS) for the SSL-100 and discuss the challenges inherent in developing a 
highly-capable, reusable design using low-cost, off-the shelf components.  

[View Full Paper] 
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AAS 17-635 

IMPULSIVE ORBIT CONTROL FOR MULTI-TARGET ACQUISITION 

Sung-Hoon Mok,* Hyochoong Bang† and Henzeh Leeghim‡ 

This proceeding proposes an optimal impulsive solution to overfly designated ground 
targets. The analytical approximate solution of delta-v is derived, which consists of only 
longitude difference and the orbital revolution number. Then, the fuel-optimal solution 
can be simplified as a way of selecting the optimal revolution number only. The obtained 
single-target solution is extended to cases of two- and three- targets. Even in multi-target 
case, it is shown that the optimization parameters are only the revolution numbers, so the 
simplicity of the solution form remains. The general solution considering descending pass 
and J2 perturbation is also presented. Numerical examples demonstrate that the impulsive 
solution, in terms of firing instants and magnitudes, makes the satellite overfly desired 
targets in a timely manner. The proposed orbit-scheduling solution may be combined 
with the conventional attitude-scheduling problem, and as a result the integrated simulta-
neous scheduling may enhance the responsiveness of the earth observing mission further.  

[View Full Paper] 
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AAS 17-692 

CONSTRAINED BURN OPTIMIZATION FOR 
THE INTERNATIONAL SPACE STATION 

Aaron J. Brown* and Brandon A. Jones† 

In long-term trajectory planning for the International Space Station (ISS), translational 
burns are currently targeted sequentially to meet the immediate trajectory constraints, ra-
ther than simultaneously to meet all constraints, do not employ gradient-based search 
techniques, and are not optimized for a minimum total delta-v (Δv) solution. Analytic 
formulations of the objective gradients and constraint gradients for the ISS trajectory are 
developed and used in an optimization solver to overcome these obstacles. Two trajectory 
examples are explored, highlighting the advantage of the proposed method over the cur-
rent approach, as well as the potential Δv and propellant savings for the ISS in the event 
of propellant shortages. [View Full Paper] 

 

 

 

                                                                 
* Aerospace Engineer, Aeroscience and Flight Mechanics Division, NASA Johnson Space Center, Mail Code EG6, 
2101 NASA Parkway, Houston, Texas 77058, USA. 
† Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at 
Austin, Austin, Texas 78712, USA. 

157

http://www.univelt.com/book=6559


  

AAS 17-713 

MODELING OF THERMAL HEATING AND THERMAL RADIATION 
PRESSURE DUE TO SUN AND ALBEDO WITH APPLICATION TO 

GRACE ORBIT AND ACCELEROMETER DATA 

Florian Wöske,* Takahiro Kato,† Meike List† and Benny Rievers†  

The precise modeling and knowledge of non-gravitational forces is of big interest to 
many scientific space missions. Thermal radiation pressure is often omitted even though 
it can be 5 to 25% of solar radiation pressure. We show a high precision modeling ap-
proach for all non-gravitational forces, considering heat fluxes origin from Sun, albedo 
and the satellite itself. We employ a finite element model of the GRACE gravity recovery 
mission with optical and thermal properties. GRACE accelerometer data are processed 
and the different modeled non-gravitational accelerations are compared and validated 
with GRACE accelerometer data. [View Full Paper] 
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AAS 17-778 

CLOUDSAT AT 11—NOW WHAT?* 

Theodore H. Sweetser,† Mona M. Witkowski‡ and Deborah G. Vane§ 

The CloudSat mission recently completed eleven years of on-orbit operations, providing 
unique radar profiles of the vertical structure of clouds. CloudSat is a member of the A-
Train, an international constellation of Earth-science satellites at 705 km altitude with an 
ascending node at 1:30 PM local time. Five years into the mission, the CloudSat space-
craft survived a near-death experience when its battery developed a current-limiting im-
pedance restriction. Dramatic changes were made to the operations of the spacecraft, al-
lowing the mission to continue providing unique weather- and climate-related data on 
clouds. While several more years of operations are possible, a number of challenges still 
exist. We discuss the science, the history, and options for the future of CloudSat.  

[View Full Paper] 
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AAS 17-779 

THE DESIGN OF THE REFERENCE ORBIT FOR NISAR, THE 
NASA-ISRO SYNTHETIC APERTURE RADAR MISSION* 

Theodore H. Sweetser† and Sara J. Hatch‡ 

The NISAR mission plans to use a 12-day-repeating sun-synchronous orbit for repeat-
pass interferometry at multiple time scales using SAR data. For the interferometry to 
work the radar measurements must be made from within a critical baseline, which hap-
pens if all of the orbits are maintained to be within a fixed tube around a reference orbit. 
This paper describes the choice of dynamical models used in defining such a reference 
orbit, the perturbative effects of dynamics not considered in the repeat orbit, and the pro-
cess of designing the orbit to repeat. We also describe our method for sharing the repeat 
orbit among multiple mission participants who use different models and software.  

[View Full Paper] 
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AAS 17-796 

HIGH ALTITUDE SUN-SYNCHRONOUS ORBITS AS SOLUTIONS 
OF THE CIRCULAR RESTRICTED SUN-EARTH-MOON-

SATELLITE 4-BODY PROBLEM 

Kazuaki Ikemoto* and Jun’ichiro Kawaguchi† 

The altitudes of the well-known Sun-Synchronous Orbits (SSOs) are limited to a few 
thousand kilometers. This is because the synchronousness is realized by the J2-term of 
the geopotential. In this study, as solutions of the circular restricted 4-body (Sun, Earth, 
Moon and satellite) problem, new SSOs at altitudes on the order of magnitude of a mil-
lion kilometers are reported. Lunar gravity assist plays an important role. Symmetries in 
the system are utilized to ease the numerical process. Besides the scientific interest, the 
result could be practical for reducing the variation of the heat input from the earth to sat-
ellites. [View Full Paper] 
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AAS 17-818 

MULTIOBJECTIVE TRAJECTORY OPTIMIZATION FOR ORBIT 
RAISING WITH COMBINED CHEMICAL-ELECTRIC PROPULSION 

David Morante,* Manuel Sanjurjo Rivo† and Manuel Soler†  

The typical strategy to place a satellite in the geostationary orbit (GEO) relies on chemi-
cal propulsion, which has proven to be effective and reliable. However, recent all-electric 
satellites attain propellant savings at the cost of a longer transfer time that results in a 
longer exposure to the Van Allen radiation Belts. A way to account for intermediate de-
sign solutions consists on allowing the two propulsion subsystems to coexist on the plat-
form. Therefore, an optimization problem of interest consists on determining the transfer 
trajectory and the optimal propulsion system simultaneously. In this paper we formulate 
it as a Hybrid Optimal Control Problem with an unknown sequence of Electric and Coast-
ing phases concurrently with an undetermined number of Chemical Firings. Our solution 
approach is based on a two step algorithm of increasing accuracy. In the first step, a heu-
ristic algorithm together with a simplified control law for the electric engine, based on the 
Lyapunov feedback control method Q-law and relaxed constraints is to obtain a complete 
set of Quasi-Pareto-Optimal solutions in terms of propellant mass, time of flight and total 
radiation flux. Then, candidate solutions are deemed to be used in a second step as initial 
guesses for a direct collocation method, where the problem is transcribed into a nonlinear 
programming (NLP) problem by discretization, considering the full dynamics and the 
complete set of constraints. The proposed approach is applied to two hybrid transfer to 
GEO, one departing from GTO and another departing from LEO. Results show that hy-
brid platforms may represent a viable yet flexible option to widen the trade space for the 
next generation of GEO satellites. [View Full Paper] 
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AAS 17-624 

PRELIMINARY ANALYSIS OF GROUND-BASED ORBIT 
DETERMINATION ACCURACY FOR THE WIDE FIELD INFRARED 

SURVEY TELESCOPE (WFIRST) 

Brad Sease,* Jessica Myers,† John Lorah‡ and Cassandra Webster§ 

The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to 
Sun-Earth L2 in 2026. This paper details a preliminary study of the achievable accuracy 
for WFIRST from ground-based orbit determination routines. The analysis here is divid-
ed into two segments. First, a linear covariance analysis of early mission and routine op-
erations provides an estimate of the tracking schedule required to meet mission require-
ments. Second, a “simulated operations” scenario gives insight into the expected behavior 
of a daily Extended Kalman Filter orbit estimate over the first mission year given a varie-
ty of potential momentum unloading schemes. [View Full Paper] 
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AAS 17-647 

COMPARING DOUBLE DIFFERENCE GLOBAL NAVIGATION 
SATELLITE SYSTEMS AT MID LATITUDE 

Krysta M. Lemm* and Gregory M. Carbott*  

With the completion of the Russian Global Navigation Satellite System (GLONASS) it is 
important to evaluate the impact of GLONASS data on position accuracy for ground-
based assets when post-processing techniques are employed. The GLONASS system can 
be used in isolation, or in combination with other Global Navigation Satellite Systems 
(GNSS) such as the United States Navstar Global Position System (GPS). GLONASS 
was designed to support navigation at higher latitudes, and previous research and testing 
for GLONASS performance at low- and mid-latitudes has been limited. This paper will 
focus on post-processed double-differenced data of a stationary mid-latitude land point 
over several collection time spans. Results show GLONASS improves positioning per-
formance when used in concert with GPS, particularly when data is collected over a 
shorter time span. The performance improvement diminishes when longer data sets are 
collected and processed. [View Full Paper] 
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AAS 17-668 

RESEARCH AND DEMONSTRATION OF DOR TRACKING 
BY SPARSE CALIBRATION 

S. T. Han,* G. S. Tang,† J. S. Ping,‡ Z. K. Zhang,§  
L. Chen,‡ T. P. Ren,‡ J. Sun,‡ M. Wang‡ and W. T. Lu‡  

Differential One-Way Ranging(ΔDOR) based on short-alter-scan calibration is widely 
used for orbit measurement of a spacecraft. This paper presents the differential interfero-
metric tracking with sparse calibration mode. Both deep space antennas keep pointing at 
the spacecraft while the target is in view of the stations. Interruption of telemetry and tel-
ecommand by traditional short-alter-scan mode could be avoided. During CE'3 
100x15km encircle lunar orbit, interferometric tracking was conducted, by comparing 
ΔDOR observable with high accurate orbit, the residual delay error of the experiment 
tracking arc is about 1ns. [View Full Paper] 
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AAS 17-750 

BATCH SEQUENTIAL ESTIMATION WITH NON-UNIFORM 
MEASUREMENTS AND NON-STATIONARY NOISE* 

Todd A. Ely† and Jill Seubert‡ 

Sequential estimation using the traditional discrete Kalman filter typically assumes the 
measurement time and state update time are coincident. This is often a poor assumption 
in realistic measurement scenarios where the data can be received from multiple sources 
at differing times. This paper develops the necessary algorithm adjustments needed for 
the Kalman filter to readily process measurement data that arrive at varying times and 
with non-stationary noise. The algorithm is applied to a relevant problem of orbit deter-
mination using one-way uplink radiometric tracking of a spacecraft (in the present case a 
Mars orbiter). [View Full Paper] 
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AAS 17-755 

GAUSSIAN MIXTURE KALMAN FILTER FOR ORBIT 
DETERMINATION USING ANGLES-ONLY DATA 

Mark L. Psiaki* 

A Gaussian mixture nonlinear Kalman filter is developed for satellite orbit determination 
using angles-only data. It is being developed for a space situational awareness system that 
must estimate orbits based on sparsely available optical tracking data. The Gaussian mix-
ture framework is used to deal with nonlinear effects that cannot be handled by a conven-
tional extended Kalman filter or an unscented Kalman filter. The Gaussian mixture filter 
consists of a bank of extended Kalman filters whose relative weights are affected by their 
relative abilities to fit the measurement data. It includes a re-sampling step between the 
dynamic propagation and the measurement update that enforces an upper bound on each 
mixand’s covariance. This bound enables the algorithm to maintain a good approximation 
of the underlying Bayesian conditional probability density function despite nonlinearities. 
The filter’s initial Gaussian mixture is derived from a short arc of angles-only measure-
ment data and from constraints on the minimum periapsis and the maximum apoapsis. 
The filter has been tested using truth-model simulation data for several nearly geosyn-
chronous cases. Reliable convergence and good accuracy can be achieved using once-
per-night data arcs that are only 20 seconds long. [View Full Paper] 
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AAS 17-793 

INTERPOLATION ON THE UNIT SPHERE IN LAPLACE’S METHOD 

Ethan Burnett* and Andrew J. Sinclair† 

This paper proposes an alternative interpolation approach for the line-of-sight measure-
ments in Laplace’s method for angles-only initial orbit determination (IOD). The classi-
cal implementation of the method uses Lagrange polynomials to interpolate three or more 
unit line-of-sight (LOS) vectors from a ground-based or orbiting site to an orbiting target. 
However, such an approach does not guarantee unit magnitude of the interpolated line-of-
sight path except at the three measurement points. The violation of this constraint leads to 
unphysical behavior in the derivatives of the interpolated line-of-sight history, which can 
lead to poor IOD performance. By adapting a spherical interpolation method used in the 
field of computer graphics, we can obtain an interpolated line-of-sight history that is al-
ways unit norm. The first and second time derivatives of this interpolation yield the esti-
mated line-of-sight rate and acceleration used in Laplace’s method. This new spherical 
interpolation method often leads to significant performance improvements in Laplace’s 
IOD method, which will be demonstrated through careful study of simulation results.  

[View Full Paper] 
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AAS 17-794 

OPTIMAL LINEAR ORBIT DETERMINATION 

Andrew J. Sinclair* and T. Alan Lovell*  

Modern methods for angles-only orbit determination traditionally write the line-of-sight 
measurement as a nonlinear function of the object’s instantaneous position. An alterna-
tive is to consider taking a cross product of the measured line-of-sight vector with the in-
stantaneous position. This leads to a rigorously linear measurement model, and suggests 
an alternative problem definition to minimize the residuals in these cross-product equa-
tions. This approach is analogous to the optimal linear attitude estimator. This paper ana-
lyzes the covariance of this optimal linear orbit determination, and considers the appro-
priate weighting scheme for the cross-product residuals. [View Full Paper] 
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AAS 17-810 

AN IMPROVED REPRESENTATION OF MEASUREMENT 
INFORMATION CONTENT VIA THE DISTRIBUTION OF 

THE KULLBACK-LEIBLER DIVERGENCE 

Matthew J. Gualdoni* and Kyle J. DeMars† 

Proper utilization of sensor networks is key in target-dense or measurement-scarce envi-
ronments, such as in the creation and maintenance of reliable records for space objects in 
Earth orbit. In recent years, there have been many investigations of utilizing different in-
formation-theoretic measures as performance measures in allocating sensor tasks to max-
imize the information gained. More specifically, information divergences have been con-
sidered in sensor tasking schemes to effectively and efficiently utilize the available sensor 
resources. However, it is typical that only the expected information gain with respect to 
the measurement likelihood is considered, while the rest of the distribution of the diver-
gence in question is disregarded. This work studies the full distribution of the Kullback-
Leibler divergence and if the utilization of this knowledge when committing to an action 
regarding the acquisition of measurement information is beneficial. [View Full Paper] 
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AAS 17-815 

MINIMUM DIVERGENCE FILTERING USING 
A POLYNOMIAL CHAOS EXPANSION 

Christine L. Schmid* and Kyle J. DeMars† 

Bayesian filters for discrete-time systems make use of the Chapman-Kolmogorov equa-
tion and Bayes’ rule to predict and update the uncertainty of a state. For nonlinear filter-
ing problems, the Bayesian recursion is not guaranteed to close. An assumed density 
framework can be used to force the recursion to close, where one such realization is the 
minimum divergence filter, which seeks to minimize the Kullback-Leibler divergence of 
the assumed density with respect to the reference state density. This results in a moment 
matching problem, where the moments are traditionally approximated using Gauss-
Hermite quadrature. An alternative solution is presented by replacing the Gauss-Hermite 
quadrature with a polynomial chaos expansion to reduce computational cost and provide 
a method that is more robust to distributional assumptions. The ability of the polynomial 
chaos expansion to compute the expected value of a random variable that cannot be as-
sumed Gaussian is tested against a Gauss-Hermite quadrature approximation, unscented 
transform, and Monte Carlo sampling. Another test is preformed isolating the corrector of 
the minimum divergence filter with varied prior uncertainties. The two methods are then 
compared in an orbital state estimation problem. [View Full Paper] 
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AAS 17-557 

A COMPARISON OF GRAVITY MODELS USED FOR 
NAVIGATION NEAR SMALL BODIES 

James K. Miller* and Gerald R. Hintz† 

A number of gravity models are used for trajectory design, scientific investigations and 
navigation of spacecraft. Some gravity models are approximate and others are exact. Ap-
proximate models are adequate for trajectory design and some scientific investigations, 
but high precision models are required for navigation, particularly for orbit determina-
tion. The most demanding gravity model requirements are for orbit determination around 
large irregularly-shaped bodies. A harmonic expansion of Legendre polynomials and as-
sociated functions, while satisfactory for spherically-shaped planets, does not work well 
for large irregularly-shaped bodies such as comets or asteroids. Inside the sphere of max-
imum radius, the harmonic expansion diverges. Even outside the sphere of maximum ra-
dius, the harmonic expansion requires a high degree and order to obtain accurate orbit 
determination solutions. 

In this paper, several gravity models are analyzed and compared to determine their suita-
bility for navigation. Accuracy, number of parameters that need to be determined by the 
orbit determination filter and speed of computation that must include acceleration and 
variational partial derivatives are factors that must be considered. Another important fac-
tor is the ability to change the computation speed as a function of the required accuracy. 
For a harmonic expansion, this may be accomplished by changing the degree and order of 
the expansion. Changing the degree and order introduces an abrupt jerk to the trajectory, 
which probably would not affect trajectory design, but could seriously confuse the orbit 
determination filter. Gravity models that use point masses or mascons also have singu-
larities that are a problem for orbit determination. Gravity models that involve numerical 
integration can be designed to make a seamless transition using error control.  

[View Full Paper] 
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AAS 17-619 

AUTONOMOUS SHAPE ESTIMATION AND NAVIGATION ABOUT 
SMALL BODIES USING LIDAR OBSERVATIONS 

Benjamin Bercovici,* Ann Dietrich† and Jay McMahon‡ 

This paper provides insight into the development of an autonomous attitude and shape 
registration framework used in conjunction with an autonomous relative navigation filter, 
both tailored for operations about small bodies such as asteroid Itokawa. These methods 
rely on Flash-Lidar data as their only measurement type. In particular, an instance of the 
Iterative-Closest-Point to Plane algorithm is used to simultaneously recover the target’s 
attitude and blend it with the facet/vertex shape model being constructed in a feature-
tracking-less fashion. Results demonstrate the capability of the joint framework to con-
struct a shape model of the small body on-the-fly that is then utilized by the navigation 
filter during a closer orbit phase. Itokawa’s volume was captured within 0:2% when ob-
served from a 3-km orbit. A follow-up relative-navigation phase over a 1 km-radius ter-
minator orbit allowed the spacecraft position to be determined within 5 meters while us-
ing the shape model previously reconstructed. Future work will improve the fidelity of 
the simulation and leverage the benefit from alternative shape parametrizations to in-
crease the overall framework’s performance and robustness. [View Full Paper] 
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AAS 17-658 

PARALLELIZED SMALL-BODY LANDER/HOPPER SIMULATIONS 
WITH DISTRIBUTED CONTACT AND PROCEDURAL NOISE 

Stefaan Van wal,* Robert Reid† and Daniel Scheeres‡ 

A contact model for the interaction between a lander/hopper spacecraft and the surface of 
a targeted small body is derived. The surface is represented implicitly, allowing for fast 
distance computations to high-resolution shape models. The motion of the spacecraft is 
propagated relative to the rotating target body. A distributed normal force and torque is 
generated by spring-damper units attached to vertices that cover the spacecraft shell. A 
single friction force is applied at an effective application point and drives the sliding ve-
locity of that point to zero. An expression for the sticking force that maintains zero slid-
ing velocity is derived. Using a regularization technique, the transition between slip and 
stick is smoothed. Rolling resistance reduces the spacecraft angular velocity, while main-
taining the slip state of the application point. The model is extensively tested on a flat 
plane, with particular attention given to the applied numerical tolerances. Sample simula-
tions on a rotating sphere and the signed distance field of comet 67P/Churyumov-Gerasi-
menko illustrate relevant applications of the model. [View Full Paper] 
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AAS 17-720 

GEOMETRIC CONTROL FOR AUTONOMOUS LANDING ON 
ASTEROID ITOKAWA USING VISUAL LOCALIZATION 

Shankar Kulumani, Kuya Takami and Taeyoung Lee*  

This paper considers the coupled orbit and attitude dynamics of a dumbbell spacecraft 
around an asteroid. Geometric methods are used to derive the coupled equations of mo-
tion, which are defined on the configuration space of the special Euclidean group, and 
then a nonlinear controller is designed to enable trajectory tracking of desired landing 
trajectories. Rather than relying on sliding mode control or optimization based methods, 
the proposed approach avoids the increased control utilization and computational com-
plexity inherent in other techniques. The nonlinear controller is used to track a desired 
landing trajectory to the asteroid surface. A monocular imaging sensor is used to provide 
position and attitude estimates using visual odometry to enable relative state estimates. 
We demonstrate this control scheme with a landing simulation about asteroid Itokawa.  

[View Full Paper] 
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AAS 17-743 

MASCON MODELS FOR SMALL BODY GRAVITY FIELDS 

Patrick T. Wittick* and Ryan P. Russell† 

In the context of small bodies, mascon models can be attractive because they are simple 
to compute, implement, and parallelize. However, to achieve a reasonable surface accu-
racy, mascon models typically require too many elements to be competitive with other 
models. Here, mascon models are revisited, with the intent to minimize the number of 
elements, optimize the placement of the elements, and modify the base model of elements 
in order to improve computational efficiency, while enabling their use at low altitudes. 
The use of spherical harmonics elements, buried within a mascon model, is shown to of-
fer model evaluation speedups and reduced memory footprints at little or no accuracy 
cost over homogeneous mascon models. The resulting mixed element models expand the 
design space for optimal packing structures while providing fast, accurate field evalua-
tions to enable rapid small body trajectory searches. [View Full Paper] 
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AAS 17-763 

IMPROVED GRAVITY MODEL PERFORMANCE BY 
USING MIXED FIDELITY SHAPE MODELS FOR 

IRREGULARLY SHAPED SMALL BODIES 

Jay W. McMahon* 

This work investigates the use of mixed fidelity shape models to compute the gravitation-
al acceleration around small bodies. These bodies have complicated gravity fields, espe-
cially near their surfaces, and the accelerations are generally computed using the polyhe-
dral gravity model. In this work, an algorithm is developed for computing mixed resolu-
tion shapes with the goal of getting similar accuracy in the gravitational acceleration 
while reducing the computational load. Results show that this method can achieve accu-
racies in gravity computation similar to shapes with many more facets than the mixed 
resolution shapes here, but full integration into trajectory simulations is needed to deter-
mine if computational savings are significant. [View Full Paper] 
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AAS 17-768 

MODELING ASTEROIDS TO ASSIST IN ORBITING 
AND LANDING MISSIONS 

Flaviane C. F. Venditti* and Evandro M. Rocco† 

Asteroids are rotating bodies with asymmetric distribution of mass, which makes the 
gravitational field around them different from spherical bodies. In order to more accurate-
ly study the gravitational field around these objects, it is necessary to have a physical 
model. To simplify the model of an asteroid, it is common to use approximations to sim-
ple shapes such as ellipsoids. However, this may lead to an imprecise model, especially 
when the asteroid has a very asymmetric shape. Thus, a new methodology developed to 
model the gravitational field of the asteroids is presented, called Mascon-layer model.‡ It 
consists in using a polyhedron shape model, which is built using observational data, thus 
giving a good approximation of the real shape of the object. This shape model is then 
transformed into layers of mass concentrations. The gravitational potential is obtained 
using the new model, and then applied to analyze very close orbits on the collision 
boundary, and very distant orbits on the verge of escaping the sphere of influence of the 
asteroid's gravitational field. Orbital maneuvers, using continuous low thrust in closed 
loop, were also performed. One of the advantages of the methodology developed is that it 
is possible to use a simpler approach, requiring less computational effort, but still using a 
reliable source for the shape model. [View Full Paper] 
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AAS 17-781 

PRACTICAL GALERKIN VARIATIONAL INTEGRATORS FOR 
ORBITAL DYNAMICS ABOUT ASTEROIDS 

Dante A. Bolatti* and Anton H. J. de Ruiter† 

This paper presents a practical approach to a class of symplectic integrators known as Ga-
lerkin variational integrators, that allow the construction of higher order integration 
methods. These integrators preserve energy in Hamiltonian conservative systems, and are 
highly accurate for long term integration. By properly configuring the control points and 
quadrature functions used to construct the integrator, practical equations of motion can be 
obtained for orbital trajectory propagation that are suitable for study of spacecraft dynam-
ics about small bodies. Simulations obtained with these methods are compared to the tra-
ditional non-symplectic Runge-Kutta fourth-order method and a second-order variational 
integrator, focusing on the implications of energy conservation and accuracy of the meth-
od. [View Full Paper] 
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AAS 17-823 

STABILITY ANALYSIS OF 
COUPLED ORBIT-ATTITUDE DYNAMICS AROUND ASTEROIDS 

USING FINITE-TIME LYAPUNOV EXPONENTS 

Shota Kikuchi,* Yuichi Tsuda† and Jun’ichiro Kawaguchi‡ 

This study investigates coupled orbit-attitude dynamics around asteroids subject to solar 
radiation pressure and gravity irregularities. The solutions of Sun-synchronous orbits 
with Sun-tracking attitude motion are analytically derived by applying linearization and 
averaging. To verify the validity of the analytical solutions, numerical simulations are 
performed based on non-linear coupled orbit-attitude equations of motion. In addition, 
the stability of such coupled motion is analyzed using finite-time Lyapunov exponents. It 
is demonstrated that the Sun-synchronous orbit-attitude coupled motions exhibit long-
term stability under certain conditions, and thus, these motions are useful and feasible 
options for asteroid missions. [View Full Paper] 
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AAS 17-825 

FILTER ROBUSTNESS OF FLASH LIDAR BASED NAVIGATION 
AROUND SMALL BODIES 

Ann Dietrich* and Jay W. McMahon† 

This work explores the limits of using flash lidar measurements around an asteroid for 
orbit determination by testing the robustness of these methods to model errors. Previous 
work showed that flash lidar can provide accurate orbit determination with an onboard 
shape model, and is less computationally expensive than using the state-of-the-art optical 
navigation methods. Emulating pointing jitter as a random pointing offset error at each 
observation time is accurately resolved with the iterative least-squares filter. A low fideli-
ty shape model is used in the onboard filters to increase computational efficiency, and the 
filters do not diverge. The majority of the state errors are captured with a sequential con-
sider covariance analysis. The results of these studies add confidence to pursuing the use 
of flash lidar measurements for autonomous small body spacecraft navigation.  

[View Full Paper] 
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AAS 17-598 

WALKING THE FILAMENT OF FEASIBILITY: GLOBAL 
OPTIMIZATION OF HIGHLY-CONSTRAINED, MULTI-MODAL 

INTERPLANETARY TRAJECTORIES USING A NOVEL 
STOCHASTIC SEARCH TECHNIQUE 

Arnold C. Englander* and Jacob A. Englander† 

Interplanetary trajectory optimization problems are highly complex and are characterized 
by a large number of decision variables and equality and inequality constraints as well as 
many locally optimal solutions. Stochastic global search techniques, coupled with a 
large-scale nonlinear programming (NLP) solver, have been shown to solve such prob-
lems but are inadequately robust when the problem constraints become very complex. In 
this work, we present a novel search algorithm that takes advantage of the fact that equal-
ity constraints effectively collapse the solution space to lower dimensionality. This new 
approach “walks the filament” of feasibility to efficiently find the global optimal solu-
tion. [View Full Paper] 
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AAS 17-605 

GRAVITY-ASSIST TRAJECTORIES TO THE ICE GIANTS: 
AN AUTOMATED METHOD TO CATALOG  
MASS- OR TIME-OPTIMAL SOLUTIONS 

Kyle M. Hughes,* Jeremy M. Knittel* and Jacob A. Englander*  

This work presents an automated method of calculating mass (or time) optimal gravity-
assist trajectories without a priori knowledge of the flyby-body combination. Since gravi-
ty assists are particularly crucial for reaching the outer Solar System, we use the Ice Gi-
ants, Uranus and Neptune, as example destinations for this work. Catalogs are also pro-
vided that list the most attractive trajectories found over launch dates ranging from 2024 
to 2038. The tool developed to implement this method, called the Python EMTG Auto-
mated Trade Study Application (PEATSA), iteratively runs the Evolutionary Mission 
Trajectory Generator (EMTG), a NASA Goddard Space Flight Center in-house trajectory 
optimization tool. EMTG finds gravity-assist trajectories with impulsive maneuvers using 
a multiple-shooting structure along with stochastic methods (such as monotonic basin 
hopping) and may be run with or without an initial guess provided. PEATSA runs in-
stances of EMTG in parallel over a grid of launch dates. After each set of runs completes, 
the best results within a neighborhood of launch dates are used to seed all other cases in 
that neighborhood—allowing the solutions across the range of launch dates to improve 
over each iteration. The results here are compared against trajectories found using a grid-
search technique, and PEATSA is found to outperform the grid-search results for most 
launch years considered. [View Full Paper] 
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AAS 17-654 

GLOBAL, MULTI-OBJECTIVE TRAJECTORY OPTIMIZATION 
WITH PARAMETRIC SPREADING 

Matthew A. Vavrina,* Jacob A. Englander,†  
Sean M. Phillips‡ and Kyle M. Hughes†  

Mission design problems are often characterized by multiple, competing trajectory opti-
mization objectives. Recent multi-objective trajectory optimization formulations enable 
generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. 
A byproduct of these formulations is that clustering in design space can occur in evolving 
the population towards the Pareto front. This clustering can be a drawback, however, if 
parametric evaluations of design variables are desired. This effort addresses clustering by 
incorporating operators that encourage a uniform spread over specified design variables 
while maintaining Pareto front representation. The algorithm is demonstrated on low- and 
high-thrust mission examples, and enhanced multidimensional visualization strategies are 
presented. [View Full Paper] 
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AAS 17-701 

FEASIBILITY OF LOW THRUST TRAJECTORY OPTIMIZATION 
APPLICATIONS TO DEBRIS REMOVAL MISSION DESIGN 

Jason A. Reiter,* Andrew M. Goodyear,* Davide Conte* and Jason M. Everett† 

The density of debris in Low Earth Orbit makes operating a spacecraft more difficult with 
the addition of every new satellite. Kessler proposed a scenario in which the density be-
comes high such that collisions between objects cascade and cause further collisions. In-
spired by the 9th Global Trajectory Optimization Competition, a mission is theorized that 
employs low-thrust propulsion to optimally rendezvous with and deorbit debris to prevent 
such a scenario from ever occurring. A beam search clustering method was used to select 
a series of individual missions that maximize the number of debris pieces removed while 
minimizing the fuel cost. However, it was found that such a mission is likely to be infea-
sible due to the J2 perturbation effects and limitations of low-thrust optimization technol-
ogy. [View Full Paper] 
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AAS 17-715 

STOCHASTIC EVENT-ROBUST DEOPTIMIZATION TECHNIQUE 
FOR LOW THRUST TRAJECTORY DESIGN 

Yuichi Tsuda* 

This paper describes a methodology to find almost-optimum trajectories which are robust 
against inflight stochastic events, such as navigation/guidance error and unexpected 
missed thrust due to temporal spacecraft malfunctions. A Monte-Carlo based solution 
search technique was developed which can generate robustness-increased trajectories by 
deoptimizing the original solution. Arbitrary practical control constraints can be imposed, 
and one can obtain a solution range in the neighborhood of the original solution which 
improves the stochastic events-robustness. The technique was applied to an asteroid sam-
ple-return mission Hayabusa2 to improve the missed-thrust recoverability, which are pre-
sented in detail in this paper. [View Full Paper] 
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AAS 17-785 

AUTOMATED SOLUTION OF LOW ENERGY TRAJECTORIES 

Ryne Beeson,* Vishwa Shah,† Joshua Aurich† and Donald Ellison*  

In this paper we introduce a framework for the automated solution of low energy trajecto-
ries. Specifically, we are interested in solving constrained global spacecraft trajectory op-
timization problems in multi-body regimes (e.g. cislunar missions) that leverage the natu-
ral global transport of the multi-body dynamical system to provide low propellant control 
solutions. A main difficulty in automated global solution of this type of problem has been 
automating dynamical systems techniques to find ideal candidate boundary conditions 
and then connecting these structures in a natural way for global and local optimization 
schemes to be successful. We demonstrate the evolving capability of our framework by 
solving a multi-phase low-thrust cislunar trajectory problem. [View Full Paper] 

 

 

 

                                                                 
* Ph.D. Candidate, Aerospace Engineering, University of Illinois Urbana-Champaign, 104 S. Wright Street, Urbana, 
Illinois 61801, USA. 
† Masters Student, Aerospace Engineering, University of Illinois Urbana-Champaign, 104 S. Wright Street, Urbana, 
Illinois 61801, USA. 

193

http://www.univelt.com/book=6589


  

AAS 17-788 

APPLICATIONS OF THE MULTIPLE-SHOOTING DIFFERENTIAL 
DYNAMIC PROGRAMMING ALGORITHM WITH 

PATH AND TERMINAL CONSTRAINTS 

Etienne Pellegrini* and Ryan P. Russell† 

The first multiple-shooting transcription of a Differential Dynamic Programming algo-
rithm was presented in the first part of this paper series. In the present paper, the Multi-
ple-Shooting Differential Dynamic Algorithm is applied to a variety of constrained non-
linear optimal control problems, including sensitive spacecraft trajectory optimization 
problems. Both path and terminal constraints are treated using the Augmented Lagrangi-
an approach of Powell, Hestenes, and Rockafellar for equalities and inequalities. The 
constraints treatment is developed and validated, and completes the algorithm of Part 1. 
The full algorithm is applied to constrained spacecraft trajectory optimization problems. 
The results for example applications demonstrate the advantages of the multiple-shooting 
approach’s convergence properties over the single-shooting algorithm. [View Full Paper] 

 

 

 

                                                                 
* Graduate Student, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at 
Austin, 210 E. 24th Street, Austin, Texas 78712, USA. 
† Associate Professor, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at 
Austin, 210 E. 24th Street, Austin, Texas 78712, USA. 

194

http://www.univelt.com/book=6590


  

AAS 17-814 

FAST AND RELIABLE APPROXIMATIONS FOR 
INTERPLANETARY LOW-THRUST TRANSFERS* 

Damon Landau† 

A three-step process bridges the gap between low-fidelity solutions that ignore optimal 
dynamics and optimized solutions that are computationally expensive to generate. First, 
semi-analytic solutions for transfers with free time and angle characterize the evolution of 
the shape and orientation of the orbit. Next, optimal control theory supplies the thrust 
vector with variable specific impulse while satisfying flight time and transfer angle con-
straints. Transfers with the additional constraint of constant specific impulse then provide 
a more realistic thruster model for preliminary trade studies. These approximations deliv-
er a hundredfold improvement in run time at the expense of a few percent error in mass.  

[View Full Paper] 
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AAS 17-833 

SYNTHESIS OF HIGHLY INCLINED AND SHORT PERIOD SOLAR 
POLAR ORBIT WITH ELECTRIC PROPULSION 

Takehiro Koyanagi* and Junichiro Kawaguchi† 

Solar polar observation satellites should be in orbits highly inclined to the ecliptic plane. 
However, the delta-V required to achieve such orbit is too large to get with whichever 
propulsion system. From this situation, Ulysses, the only satellite on a high inclination 
orbit so far, used gravity-assist at Jupiter. Because Ulysses flew ballistically after Jupiter 
flyby, its orbit kept large and period was long. Therefore, solar polar observation time 
was short compared to orbit period and distance from the sun was about 2AU when ob-
servation. To solve these problem, a method called E-2-I conversion was invented. This 
method attains highly inclined and short period orbit ballistically by repeating Earth flyby 
after Jupiter flyby. Gravity-assist at Earth can make the orbit smaller, higher inclination 
and shorter period. Gravity assist at Earth affects weaker than that of Jupiter but by repe-
tition of it can make semi-major axis of the orbit smaller than 1AU and inclination of it 
about 90 degrees. This is better for solar polar observation than that of Ulysses. However, 
there was still a problem. Because this method repeats Earth flyby, orbit period after each 
flyby must be rational number to meet Earth. Moreover, because of weakness of Earth 
gravity, Earth meeting period can become as long as 5 years and it takes 33 years to reach 
eventual orbit. 

In this study, we shortened the whole mission period drastically with low thrust continu-
ous propulsion represented by electric propulsion. In previous study, optimization analy-
sis has been made to increase the orbital inclination angle itself using continuous thrust, 
but no attempt has been made to combine optimization trajectory by continuous thrust 
and E-2-I conversion. This study uses continuous thrust not for changing orbit plane 
which demand huge delta-V but for changing orbit period on the same orbit plane. For 
example, in ballistic case, the best orbit period after the 1.5 years’ period orbit was 1.25 
years not 1 year because Earth gravity is too weak to achieve 1 year period. Therefore, 
Earth meeting period became 5 years. However, even if it is impossible to change the or-
bit period from 1.5 years into 1 year by swing-by. [View Full Paper] 
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AAS 17-837 

SPACE TRAJECTORY OPTIMIZATION USING EMBEDDED 
BOUNDARY VALUE PROBLEMS 

David Ottesen* and Ryan P. Russell† 

The proposed algorithm for preliminary spacecraft trajectory design is a gradient-based, 
direct method that minimizes a sum of impulsive maneuvers, generalized for spacecraft 
dynamics, but can benefit from fast and robust two-body approximations. The solution to 
many short and ballistic embedded boundary value problems on the inner-loop enforces 
position continuity for every optimization iteration, reducing the burden on any outer-
loop optimizer. The many impulsive maneuvers between solutions lead to a natural ap-
proximation for low-thrust trajectories. Cost and constraint boundary value problem par-
tial derivatives are derived and examples are provided. The algorithm draws from legacy 
works including the Lambert problem and primer vector theory. [View Full Paper] 
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AAS 17-565 

DEPLOYMENT AND CONTROL ALGORITHMS FOR 
WHEEL CLUSTER FORMATION SATELLITES@ 

Chia-Chun Chao* and Victor S. Lin† 

A simple and elegant algorithm to populate a cluster around a center satellite was derived 
based on the concept of wheel formation in the same orbit plane. The algorithm of using 
small eccentricity vector separation to place those satellites on single or multiple wheel-
shaped sub-orbits of at least 10 companion satellites gives desirable relative motion to the 
center satellite with safe separation distance among all the companion satellites. Numeri-
cal integration results show that with properly synchronized initial semi-major axis of 
each companion spacecraft with identical design, the desired wheel formation can last for 
months without stationkeeping at GPS and GEO altitudes. A set of optimized control 
strategies were developed and simulated for keeping the satellites in close formation. 
Without out-of-plane deviations and control, the cost of fuel consumption is minimized. 
This generalized wheel cluster formation can be applied to all types of orbits, such as 
LEO, MEO, GEO and HEO (Molniya, GTO and Tundra), as well as for artificial satel-
lites orbiting other planets. [View Full Paper] 
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AAS 17-601 

LONG-TERM STABILITY OF 
COMMON-INCLINATION SATELLITE CLUSTERS* 

Stuart J. Gegenheimer† 

A cluster of satellites is a group of satellites in carefully specified close orbits, such that 
the satellites passively remain within a specified bounded area. In this paper, we examine 
several strategies for initial setup to minimize cluster deformation due to orbital perturba-
tions. We then use these strategies in an assessment of the stability of three common-
inclination cluster types in four orbital regimes using a high fidelity orbit propagator. Re-
sults show that it is possible to set up clusters which are passively stable over 90 days in 
LEO, one to two years in MEO, and five years in GEO. Stability of clusters is highly sen-
sitive to the initial orbital elements of the cluster members and the area-to-mass ratios of 
those satellites. The stable clusters shown in this paper suggest very low propulsion costs 
for formation keeping of these clusters. [View Full Paper] 
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AAS 17-607 

SATELLITE CONSTELLATION ORBIT DESIGN TO ENABLE 
A SPACE-BASED RADIO INTERFEROMETER 

Sonia Hernandez,* Jeffrey R. Stuart,* David M. Garza,*  
Stephen B. Broschart,* Sebastian J. I. Herzig* and Steve A. Chien*  

Two different design methods for a networked constellation of N small satellites are pre-
sented. In the first method, the (linear) Clohessy-Wilthsire equations are used as an initial 
design tool, followed by conversion to a two-body model. Discrepancies between the lin-
ear and nonlinear solutions are minimized in the conversion process. The second method 
utilizes invariant manifold theory, by perturbing a reference trajectory in different direc-
tions along the center eigenvectors. Both methods require 5N parameters to fully define a 
constellation. In a relative, rotating frame of the reference path, the spacecraft appear as 
periodic ellipses of varying sizes. Deployment, reconfiguration using propulsive maneu-
vers, and station keeping costs for an example mission scenario are addressed.  

[View Full Paper] 
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AAS 17-760 

RESULTS OF THE APOGEE-RAISING CAMPAIGN OF 
THE MAGNETOSPHERIC MULTISCALE MISSION 

Trevor Williams,* Neil Ottenstein,† Eric Palmer† and Jacob Hollister†  

This paper describes the apogee-raising campaign of the Magnetospheric Multiscale mis-
sion, where the spacecraft increased their apogee radii from 12 to 25 Earth radii in a total 
of 98 maneuvers. These maneuvers included an initial formation resize set to spread the 
spacecraft apart for safety, 32 apogee-raise delta-v maneuvers, their associated slews, 
four perigee-raise maneuvers and the associated slews, and finally a set of maneuvers to 
get back into formation. These activities were all accomplished successfully and on 
schedule with no anomalies, and at a fuel consumption somewhat less than predicted. As 
a result, MMS was set up ready to carry out in situ studies of magnetic reconnection in 
the magnetotail, with sufficient fuel remaining for a significant extended mission.  

[View Full Paper] 
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AAS 17-761 

AUTONOMOUS OPERATIONS OF LARGE-SCALE SATELLITE 
CONSTELLATIONS AND GROUND STATION NETWORKS 

Giovanni Minelli,* Mark Karpenko,† I. Michael Ross‡ and James Newman§ 

A dynamic optimization problem is employed to aid operators of large-scale satellite con-
stellations with automated mission planning and data collection. Traditional techniques 
focus on graph-theoretic ideas that use heuristics to simplify the problem. The solution 
presented in this paper is formulated as a dynamic optimization problem that scales line-
arly as the number of satellites and ground stations increases. The problem formulation is 
implemented with the DIDO© pseudospectral optimal control solver to produce decon-
flicted ground antenna slew trajectories as a function of parameters and constraints used 
commonly by satellite operators. In this paper, one such factor, space-to-ground link 
margin, is used for the proof of concept. Other parameters can include mission priority, 
asset availability, and onboard spacecraft health. The specific problem solved here is to 
optimally slew ground-based antennas between multiple satellites that are simultaneously 
in view of one or more earth stations. The approach is tested using orbiting CubeSats and 
the Mobile CubeSat Command and Control (MC3) network. [View Full Paper] 
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AAS 17-813 

HETEROGENEOUS CONSTELLATION DESIGN METHODOLOGY 
APPLIED TO A MARS-ORBITING COMMUNICATIONS AND 

POSITIONING CONSTELLATION 

Katherine E. Mott* and Jonathan T. Black† 

This research develops software that applies model-based systems engineering design 
optimization to the problem of satellite constellation design. The software uses a genetic 
algorithm solver to generate and evaluate candidate solutions to a set of user-defined mis-
sions given allowable ranges of satellite and orbital parameters. The methodology allows 
for the comparison of single-satellite constellations and disaggregated heterogeneous 
constellations. As a sample case, the problem of designing a Mars-orbiting position, nav-
igation, timing, voice communications, and data relay constellation is examined. The op-
timization determined that a highly inclined Walker Delta constellation of forty-five mul-
tifunction satellites was the best solution. [View Full Paper] 
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AAS 17-587 

DISPOSAL INVESTIGATIONS FOR 
ESA’S SUN-EARTH LIBRATION POINT ORBITERS 

Florian Renk* and Stijn Lemmens† 

The European Space Agency has been and is currently operating spacecraft about the 
Sun-Earth Libration Points 1 and 2. More orbiters are planned to be sent to these loca-
tions in the future as well. Since the Sun-Earth Libration point orbits are unstable a dedi-
cated strategy is required to minimize the risk of the spacecraft returning towards the 
Earth and penetrating the LEO and GEO protected regions or even re-entering the Earth’s 
atmosphere in an uncontrolled fashion. For the heliocentric disposal a one- or two-
manoeuvre strategy can be chosen with different drift times between the two manoeuvres. 
In addition to the different manoeuvre strategy the size of the libration point orbit is also 
an important contributor to the Earth-Moon system return probability. Thus as one exam-
ple typical large amplitude halo orbits are studied, which can be reached via the so called 
free transfer trajectory. Spacecrafts going in these types of orbits are usually observato-
ries like Herschel, Euclid, JWST, Ariel or Plato. However, some of the spacecrafts like 
Planck or Gaia require small amplitude Lissajous orbits for their survey missions; this is 
the second class of orbits studied. The general results for the trade between manoeuvre 
sizes and drift duration (if applicable) will be presented and in addition the detailed LISA 
Pathfinder disposal investigations will be presented. Based on the results of this study 
LISA Pathfinder conducted the final disposal manoeuvre centered around the 9th of April 
2017. This leads to practical experience on dealing with space debris mitigation require-
ments for Sun-Earth Libration Points, and input for international standardisation on this 
topic. Another aspect concerns the upper stages used for the launch of libration point S/C 
and their long term behaviour. The considerations with respect to space debris mitigation 
requirements will also be discussed. [View Full Paper] 
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AAS 17-593 

DYNAMICS AND STABILITY OF 
SUN-DRIVEN TRANSFERS FROM LEO TO GEO 

Stijn De Smet,* Daniel J. Scheeres† and Jeffrey S. Parker‡ 

This paper discusses the design of transfers from low-Earth to geostationary orbits. Tradi-
tionally, the inclination change and periapse raising on the transfer trajectories are per-
formed using a combination of in-plane and out-of-plane maneuvers. For this research, all 
inclination change and periapse raising is performed through the use of solar gravity. For 
high initial inclinations, the required ΔV can be significantly lowered, as compared to the 
more classic geostationary transfer trajectories. A characterization of the transfers’ re-
sponse to missed and imperfect maneuvers is performed to identify the robustness of the 
transfers. [View Full Paper] 
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AAS 17-597 

DYNAMICAL STRUCTURES IN 
A COMBINED LOW-THRUST MULTI-BODY ENVIRONMENT 

Andrew D. Cox,* Kathleen C. Howell† and David C. Folta‡ 

Low-thrust trajectory design is challenging as the spacecraft position, velocity, and con-
trol histories must be specified simultaneously. Traditional approaches typically generate 
a single trajectory and control law via optimization algorithms. However, such solutions 
generally depend strongly on a feasible design that is input to the optimization process. 
Rather than seeking an optimal control law for each specific design problem, the focus of 
this investigation is additional insight from the exploration of a combined low-thrust mul-
ti-body dynamics model to guide the preliminary design process. Characteristics of key 
dynamical structures such as equilibrium points, periodic solutions, and manifold arcs are 
identified and compared to the well-understood circular restricted 3-body problem dy-
namics. [View Full Paper] 
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AAS 17-653 

TRAJECTORY DESIGN AND STATION-KEEPING ANALYSIS FOR 
THE WIDE FIELD INFRARED SURVEY TELESCOPE MISSION 

Natasha Bosanac,* Cassandra M. Webster,† 
Kathleen C. Howell‡ and David C. Folta§ 

The Wide Field Infrared Survey Telescope (WFIRST) is an upcoming NASA-led obser-
vatory that will complete wide-field imaging and near-infrared sky surveys from a space-
craft in the Sun-Earth L2 region. To identify a feasible mission trajectory, subject to geo-
metric and maneuver constraints, an interactive trajectory design procedure, supported by 
dynamical systems techniques, is developed. This rapid and well-informed approach is 
implemented as a module of Purdue University’s Adaptive Trajectory Design tool. In this 
paper, a feasible mission trajectory is constructed and output to a higher-fidelity model-
ing environment. Furthermore, station-keeping maneuvers are computed using a mode 
analysis strategy. [View Full Paper] 
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AAS 17-687 

FROM GTO TO BALLISTIC LUNAR CAPTUREUSING AN 
INTERIOR LAGRANGE POINT TRANSFER 

Anthony L. Genova*† and Brian Kaplinger‡ 

The presented trajectory design connects a geosynchronous transfer orbit to lunar orbit 
via ballistic lunar capture. This design utilizes two lunar flybys to raise perigee to lunar 
distance and enter a high-Earth orbit (HEO) to set up an interior transfer through the 
Earth-Moon Lagrange points L1 and L2. This design is compatible with spacecraft 
equipped with propulsion systems that lack sufficient thrust to enter lunar orbit from a 
traditional lunar orbit transfer. Additionally, the utilized HEO can act as a cislunar stag-
ing orbit with the ability to send supplies from Earth to a manned space station in lunar 
orbit. [View Full Paper] 
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AAS 17-695 

PATCHED PERIODIC ORBITS: A SYSTEMATIC STRATEGY FOR 
LOW ENERGY TRANSFER DESIGN 

Ricardo L. Restrepo* and Ryan P. Russell† 

The design of low energy transfers is in general a tedious, time consuming task due to the 
high dynamical complexity of multi-body environments. A new systematic strategy, 
which seeks to ease the complexity of this task, is presented. In this model, we show how 
precomputed three-body periodic orbits can be patched together to give rise to complex 
trajectories. The patched periodic orbits in the restricted three body problem is analogous 
to the patched conics of the two body problem. The work focuses on the design of cap-
ture and escape trajectories, as well as transfers around the minor body of the three-body 
system. Several examples are presented, with emphasis on the Jupiter-Europa and Earth-
Moon systems. [View Full Paper] 
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AAS 17-697 

COMPUTING LIBRATION POINT HYPERBOLIC INVARIANT SETS 
USING ISOLATING BLOCKS* 

Rodney L. Anderson,† Robert W. Easton‡ and Martin W. Lo†  

Earlier work focused on the computation of isolating blocks around the libration points in 
the circular restricted three-body problem and the use of these isolating blocks to com-
pute the stable and unstable manifolds of the hyperbolic invariant set around the libration 
points. In this study, the hyperbolic invariant set, or the invariant three-sphere of solu-
tions, is studied using the asymptotic approaches of the stable manifold to the periodic 
and quasiperiodic orbits contained within the invariant three-sphere. A new bisection 
method is used to compute trajectories that follow the invariant three-sphere and study 
these trajectories in more detail. [View Full Paper] 
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AAS 17-711 

SOLAR SAILING AT THE L4/L5 LIBRATION POINTS 

Ariadna Farrés* and Narcís Miguel† 

In this paper we focus on the dynamics of a solar sail in the vicinity of the Lagrangian 
points L4/L5. These points are linearly stable and so are the families of quasi-periodic 
orbits around them. Moreover, there is a region of effective stability around them, where 
the trajectory of a satellite will remain there for more than 1000 years. We will describe 
these regions and see how they are affected by the solar radiation pressure. A good un-
derstanding of these regions and of how to reach them would enable a novel space 
weather mission. [View Full Paper] 
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AAS 17-746 

TRAJECTORY OPTIMIZATION TO THE HALO ORBIT IN FULL 
FORCE MODEL USING EVOLUTIONARY TECHNIQUE 

Gaurav Vaibhav,* B. S. Kiran,† Kuldeep Negi,‡  
Atiksha Sharma§ and Saransh Shrivastava** 

Aditya-L1 is the first conceived solar mission of Indian Space Research Organization 
(ISRO) in which the spacecraft will be placed in a non-planar periodic orbit (called halo 
orbit) around Sun-Earth L1 (SE-L1) libration point. This paper focuses on the mission 
design to the Sun-Earth L1 halo orbit considering the mission and launcher constraints. 
The mission design problem to the halo orbit broadly involves two major steps- Halo or-
bit design and selection and design of optimized transfer trajectory design to achieve the 
same, starting from Earth elliptic parking orbit (EPO). In this paper, the Halo orbit gener-
ation and transfer trajectory design have been initiated in CRTBP with backward propa-
gation and its results have been fed to the developed full force model for the final design. 
Halo orbit selection is done considering mission and scientific requirements. Differential 
Evolution optimization algorithm has been developed as independent software to gener-
ate exact initial conditions for the halo orbit. Optimization of backward transfer trajectory 
design has also been carried out with the Differential Evolution. Transfer trajectory injec-
tion (TTI) ΔV, right ascension of ascending node (RAAN) and argument of perigee 
(AOP) obtained from the backward design were given as inputs to the forward trajectory 
design with full force model for propagation. The forward transfer trajectory was refined 
with full force model to achieve the desired Halo orbit insertion. [View Full Paper] 
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AAS 17-759 

EFFICIENT NRHO TO DRO TRANSFERS IN CISLUNAR SPACE* 

Gregory Lantoine† 

There has been recently a growing interest in cislunar missions, in particular for support-
ing human deep space exploration. Understanding the dynamical environment between 
various cislunar orbits is therefore useful. The current study is focused on finding effi-
cient transfer trajectory options between a Near-Rectilinear Halo Orbit (NRHO) and a 
Distant Retrograde Orbit (DRO) in the Earth-Moon system. A general methodology is 
introduced to design these transfers in a systematic way, including the use of solar per-
turbations and lunar flybys. Representative solutions are presented and compared in terms 
of delta-v and flight time, including a transfer requiring 56 m/s only. [View Full Paper] 
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AAS 17-784 

RAPID APPROXIMATION OF INVARIANT MANIFOLDS USING 
MACHINE LEARNING METHODS 

Vishwa Shah* and Ryne Beeson† 

Low-energy mission design in the three-body model leverages invariant manifolds to ob-
tain low-propellant solutions. Optimizing these trajectories requires generating manifolds 
and searching for the optimal manifold insertion point. Typically, manifolds are generat-
ed using numerical methods which can take up to several seconds, thus making the gen-
eration of these structures in an optimization framework computationally intractable. In 
this paper we will explore the application of machine learning algorithms to enable rapid 
approximation of these structures. The regression models will then be used within an op-
timization framework. The robustness, accuracy and computational advantages will be 
benchmarked against Cubic Convolution based approximation methods.  

[View Full Paper] 
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AAS 17-641 

RELATIVE MOTION EQUATIONS IN 
THE LOCAL-VERTICAL LOCAL-HORIZON FRAME FOR 

RENDEZVOUS IN LUNAR ORBITS 

Giovanni Franzini* and Mario Innocenti† 

In this paper, a set of equations for relative motion description in lunar orbits is present-
ed. The local-vertical local-horizon frame is selected to describe the relative dynamics of 
a chaser approaching a target in lunar orbit, allowing the development of relative guid-
ance and navigation systems for rendezvous and docking. The model considers the Earth 
and Moon gravitational influence on the two spacecraft, which are assumed to have neg-
ligible masses. The proposed equations are intended for the study of rendezvous missions 
with a future cis-lunar space station, whose development is currently investigated by sev-
eral space agencies as the next step for space exploration. [View Full Paper] 
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AAS 17-688 

ORBITAL ELEMENT-BASED RELATIVE MOTION GUIDANCE ON 
J2-PERTURBED ECCENTRIC ORBITS 

Bradley Kuiack* and Steve Ulrich† 

One of the challenges of autonomous guidance and control of formation flying is related 
to the on-board prediction of the relative motion between both spacecraft, which has to 
remain accurate over long propagation periods and be valid for large separation distances 
on highly elliptical orbits. In this context, this paper addresses the problem of nonlinear 
analytical guidance for spacecraft formation flying reconfiguration maneuvers. Specifi-
cally, a nonlinear analytical solution for predicting the radial, along-track, and cross-track 
relative motion on J2-perturbed elliptical orbits is first obtained and then used in a back-
propagation scheme for closed-loop guidance purposes. Finally, the relative orbital ele-
ment-based guidance solution is combined with an impulsive controller to demonstrate its 
efficiency in terms of propellant savings to execute a reconfiguration maneuver over a 
period of ten orbits. [View Full Paper] 
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AAS 17-704 

DISTRIBUTED SPACECRAFT PATH PLANNING AND 
COLLISION AVOIDANCE VIA RECIPROCAL VELOCITY 

OBSTACLE APPROACH 

Sittiporn Channumsin,* Gianmarco Radice† and Matteo Ceriotti‡ 

This paper presents the development of a combined linear quadratic regulation and recip-
rocal velocity obstacle (LQR/RVO) control algorithm for multiple satellites during close 
proximity operations. The linear quadratic regulator (LQR) control effort drives the 
spacecraft towards their target position while the reciprocal velocity obstacle (RVO) pro-
vides collision avoidance capabilities. Each spacecraft maneuvers independently, without 
explicit communication or knowledge in term of collision avoidance decision making of 
the other spacecraft in the formation. To assess the performance of this novel controller 
different test cases are implemented. Numerical results show that this method guarantees 
safe and collision-free maneuvers for all the satellites in the formation and the control 
performance is presented in term of Δv and fuel consumption. [View Full Paper] 
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AAS 17-739 

WAYPOINT-OPTIMIZED CLOSED-LOOP GUIDANCE FOR 
SPACECRAFT RENDEZVOUS IN RELATIVE MOTION 

Roberto Furfaro,* Roberto Ruggiero,† Francesco Topputo,‡  
Marco Lovera§ and Richard Linares** 

The design of a closed-loop guidance algorithm for autonomous relative motion is an im-
portant issue within the field of orbital dynamics. In this paper, we develop a closed-loop, 
waypoint-based, quasi-optimal algorithm that can be employed to execute autonomous ren-
dezvous in relative motion. Specifically, the deputy spacecraft is executing an autonomous 
rendezvous with the chief spacecraft via a modified version of the zero-effort-miss/zero-
effort-velocity (ZEM / ZEV) feed-back guidance. Here, the concept of waypoints-based 
guidance is introduced; they are defined as intermediate position and velocity targets between 
the departure point and the real final rendezvous. The position and velocity guidance is there-
fore divided in intervals. The ZEM/ZEV guidance parameters, represented by the coordinates 
of the final desired position, the components of the final required velocity and the time need-
ed to reach these targets, will be different depending on the time interval. To determine the 
guidance parameters, referred to as waypoints parameters, different strategies are analyzed. 
Specifically, a series of optimization problems, based on the minimization of the fuel con-
sumption constrained by the need to achieve high level of position and velocity accuracy, are 
formulated and solved. The first the case analyzed is the one in which the position trajectory 
of the spacecraft is unconstrained. The dynamical models considered for this case are the 
Clohessy-Wiltshire-Hills (CWH) model (circular orbit) and the Linearized equations of rela-
tive motion (LERM) model (elliptic orbit). Then, a more challenging case is studied: some 
nonlinear constraints related to the entire position trajectory are introduced in the optimiza-
tion problem formulation. It is demonstrated that in all scenarios, the performances are satis-
factory both from the point of view of the mass propellant expenditure and of the final posi-
tion and velocity errors. Finally, the robustness of the waypoint-based ZEM/ZEM guidance is 
tested by simulating the closed-loop guidance in a higher fidelity dynamical model compris-
ing the Restricted-two-body-problem (R2BP) nonlinear model with perturbations, expressed 
in form of acceleration. In addition to disturbances, a Monte Carlo analysis is conducted to 
test the system under off-nominal conditions. The results show that the waypoint-based 
ZEM/ZEV feedback guidance is able to execute not only precise but also quasi-optimal ren-
dezvous maneuvers in perturbed working conditions. [View Full Paper] 
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AAS 17-758 

A NEW TIME-EXPLICIT J2-PERTURBED NONLINEAR RELATIVE 
ORBIT MODEL WITH PERTURBATION SOLUTIONS 

Eric A. Butcher,* Ethan Burnett,† Jingwei Wang† and T. Alan Lovell‡ 

A new J2-perturbed time-explicit relative orbit model is developed including the effects 
of nonlinearities up to third order, chief orbit eccentricity, and J2 perturbation of both the 
chief and deputy orbits. The J2 acceleration is not averaged and the kinematics for per-
turbed relative motion are treated correctly. Numerical simulations for the case of vanish-
ing chief eccentricity illustrate the lower error of the proposed model compared with that 
of the HCW solution. Finally, a perturbation technique is used to obtain analytical J2-
dependent corrections to the HCW solution and to previously obtained analytical pertur-
bation solutions that account for nonlinearity effects and chief orbit eccentricity, which 
are special cases of the J2-dependent analytical solution obtained here. [View Full Paper] 
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AAS 17-791 

APPROXIMATE CLOSED FORM SOLUTIONS OF SPACECRAFT 
RELATIVE MOTION VIA ABEL AND RICCATI EQUATIONS 

Ayansola D. Ogundele,* Andrew J. Sinclair† and S. C. Sinha‡ 

Visualizing the relative motion using the Keplerian orbital elements simplifies the orbit 
description better than the use of Hill frame coordinates. Rather than using position and 
velocity the use of orbital elements has benefit of having only one term (anomaly) that 
changes with time out of the six orbital elements and this reduced the number of terms to 
be tracked from six to one. In this paper, with appropriate transformations, the evolution 
nonlinear equation of motion, which describes the dynamics of the relative motion of 
deputy spacecraft with respect to the chief spacecraft in terms of the orbit element differ-
ences, is transformed into third-order polynomial Abel-type nonlinear spacecraft relative 
equations of motion from which we obtained Riccati-type (second-order) equations. Us-
ing particular solutions of the equations general closed analytical form of the solutions 
are developed. [View Full Paper] 
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AAS 17-576 

ORBIT DETERMINATION COVARIANCE ANALYSES FOR 
THE PARKER SOLAR PROBE MISSION 

Drew Ryan Jones,* Paul Thompson,† Powtawche Valerino,* Eunice Lau,* 
Troy Goodson,* Min-Kun Chung* and Neil Mottinger*  

This paper details pre-launch navigation covariance analyses for the Parker Solar Probe 
mission. Baseline models and error assumptions are outlined. The results demonstrate 
how navigation will satisfy requirements and are used to define operational plans. A few 
sensitivities are identified and the accompanying investigations are described. Predicted 
state uncertainty results show that most requirements are met with substantial margin. 
Moreover, navigation sensitivities may be accommodated operationally and this has been 
incorporated into project planning. Detailed results are presented only for select launch 
dates, however twenty unique trajectories (one per launch opportunity) have been as-
sessed. [View Full Paper] 
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AAS 17-580 

MAGNETOSPHERIC MULTISCALE MISSION NAVIGATION 
PERFORMANCE DURING APOGEE-RAISING AND BEYOND 

Mitra Farahmand,* Anne Long,† Jacob Hollister,‡  
Julie Rose‡ and Dominic Godine‡  

The primary objective of the Magnetospheric Multiscale (MMS) Mission is to study the 
magnetic reconnection phenomena in the Earth’s magnetosphere. The MMS mission con-
sists of four identical spinning spacecraft with the science objectives requiring a tetrahe-
dral formation in highly elliptical orbits. The MMS spacecraft are equipped with onboard 
orbit and time determination software, provided by a weak-signal Global Positioning Sys-
tem (GPS) Navigator receiver hosting the Goddard Enhanced Onboard Navigation Sys-
tem (GEONS). This paper presents the results of MMS navigation performance analysis 
during the Phase 2a apogee-raising campaign and Phase 2b science segment of the mis-
sion. [View Full Paper] 
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AAS 17-589 

ENHANCED Q-LAW LYAPUNOV CONTROL FOR LOW-THRUST 
TRANSFER AND RENDEZVOUS DESIGN* 

Demyan V. Lantukh,† Christopher L. Ranieri,‡ 
Marc D. DiPrinzio§ and Peter J. Edelman†  

Improvements to proximity quotient (Q-law) Lyapunov feedback for generating low-
thrust transfers are demonstrated in terms of both numerical properties and the ability to 
do full six-state targeting. Numerical improvements include the use of a deadband for 
chatter reduction and an L-infinity norm based effectivity parameter. Fast variable target-
ing is accomplished by augmenting the semimajor axis target with a scaled bias to pro-
mote simultaneous convergence of the semi-major axis and true longitude.  

[View Full Paper] 
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AAS 17-599 

OPTICAL-BASED KINEMATIC POSITIONING FOR 
DEEP-SPACE NAVIGATION* 

Stephen B. Broschart,† Nicholas Bradley† and Shyam Bhaskaran‡ 

NASA’s Deep Space 1 mission demonstrated that a spacecraft can be navigated autono-
mously during deep-space cruise operations using only images of distant asteroids as 
measurements. This paper derives an approximation of the position estimate accuracy 
that can be achieved with this technique based on the assumption of multiple, simultane-
ous line-of-sight measurements. This achievable accuracy is computed for locations 
across the solar system, which can be used to estimate cruise navigation performance as a 
function of spacecraft trajectory. It is shown that an on-board optical navigation system 
can achieve kinematic position estimate accuracies of better than 100 km throughout the 
inner solar system with a high-performance camera and from many hundred to several 
thousand kilometers with a low-end camera. Beyond the main-asteroid belt, the feasibil-
ity of this approach suffers due to lack of targets. A case-study implementation of this 
approach for the upcoming InSight mission to Mars is also presented. [View Full Paper] 
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AAS 17-660 

ASSESSING ORBIT DETERMINATION FOR 
A LUNAR CUBESAT MISSION 

Adonis Pimienta-Penalver and Sun Hur-Diaz* 

A low-thrust lunar CubeSat mission has been proposed to satisfy the requirements of 
NASAs CubeQuest Challenge. Due to mission and system-imposed limitations, the pro-
posed nominal trajectory encompasses several orbital regimes, such as a fast lunar flyby, 
long-duration interplanetary coast arcs, and a slow spiral down into a stable lunar orbit, 
each of which calls for a distinct tracking approach. This paper presents a preliminary 
evaluation of the orbit determination requirements of each of the stages of the nominal 
trajectory using the batch filter and measurement type modeling capabilities in NASAs 
General Mission Analysis Tool (GMAT) software. [View Full Paper] 
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AAS 17-667 

FRINGE FITTING FOR DOR TONES IN GEODETIC VLBI 

S. T. Han,* Z. K. Zhang,† G. S. Tang‡ and J. S. Ping§ 

Spacecraft is usually equipped with DOR transponder to support high accuracy interfer-
ometric tracking. Some space agencies, such as ESA/NASA, adopt correlator based on 
phase locking or local correlation algorithm to process DOR tones. While geodesy and 
astronomy agencies usually deploy correlator and post-processing software (HOPS / 
AIPS), mainly for quasar observation. As single tone spectrum is totally different from 
quasar continuum spectrum, here comes the problem: is the fringe fitting still effective 
for DOR tones signal? In this paper, we discuss the fringe fitting algorithm suitable for 
DOR tones and make a comparison with experiment data. [View Full Paper] 
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AAS 17-669 

STATION-KEEPING OF LIBRATION POINT ORBITS WITH 
SEQUENTIAL ACTION CONTROL TECHNIQUE 

Dandan Zheng,* Jianjun Luo,† Zixuan Xiong‡ and Jianping Yuan§ 

A new method for L1 libration-point orbit stationkeeping is proposed in this paper. 
Three-dimensional orbits in the vicinity of the interior libration point (L1) of the Sun-
Earth/Moon barycenter system are currently being considered since 1990s. Because such 
libration point trajectories are, in general, unstable, spacecraft moving on these paths 
must use some form of trajectory control to remain close to their nominal orbit. The pri-
mary goal of this effort is the development of a stationkeeping strategy applicable to such 
trajectories. In this study, L1 libration-point orbit stationkeeping is studied using Sequen-
tial Action Control(SAC), SAC has shown promise in simulation as a closed-loop reced-
ing horizon style controller that can compute optimal actions in real-time for nonlinear 
systems. The controller is designed such that the actual trajectory tracks a predetermined 
reference orbit with good accuracy. Numerical results employing this method demon-
strate the potential of this method. [View Full Paper] 
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AAS 17-672 

MATHEMATICS USED FOR DEEP SPACE NAVIGATION 

James K. Miller* and Gerald R. Hintz† 

Navigation of spacecraft requires science and mathematics equations to be programmed 
onto digital computers. For deep space navigation, the science content is about ten per-
cent and the mathematics content is about 90 percent. Science is here defined as any 
mathematical expression that is observed and cannot be proved. We start with these sci-
ence mathematical expressions and other mathematical expressions that are accepted as 
true by inspection and may be regarded as axiomatic. The mathematics presented here 
involve manipulation of the given mathematical expressions until we obtain a result that 
is useful. The equations of motion are a simple example. The resultant derivation is re-
garded as a proof if the given mathematics are generally accepted as true. 

In this paper, a number of derivations are described that are representative of the mathe-
matics that have been used for navigation of spacecraft in deep space, beyond the orbit of 
the Moon. The selected derivations are by no means complete but emphasize those incor-
porated in computer algorithms and differ from the conventional mathematics used for 
obtaining analytic solutions. [View Full Paper] 
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AAS 17-676 

AUTONOMOUS PLANNING OF 
CONSTRAINED SPACECRAFT REORIENTATION MANEUVERS 

T. Lippman,* J. M. Kaufman* and M. Karpenko† 

Planning attitude constrained spacecraft reorientation maneuvers can be done autono-
mously by constructing and solving a nonlinear optimal control problem. Attitude con-
straints, in the form of keep-out or keep-in cones are added as path constraints. Since the 
control variables do not appear in the path constraint equations, it can be difficult to ob-
tain numerical solutions. In this paper, the constrained spacecraft reorientation problem is 
solved using guess-free pseudospectral optimal control theory. The behavior of the dual 
variables, and in particular the path covectors, is studied and some connections between 
computation and the nature of the dual space is discussed. [View Full Paper] 
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AAS 17-684 

PULSAR NAVIGATION: DEFINING AN UPPER BOUND FOR 
DISTANCE FROM REFERENCE 

Stoian Borissov,* Grayson Bridges,† William Vlasak,† 
Jeffrey Butcher† and Daniele Mortari‡ 

Pulsar navigation uses signals from distant pulsars to estimate an observer’s position rela-
tive to a defined reference point. Due to the periodic nature of incoming pulsar signals, 
the possible locations where a certain pulse pattern can be observed is non-unique. In or-
der to prevent such ambiguous measurements, an upper bound on the distance from the 
reference point is developed which guarantees a unique position estimate. This paper first 
explains in detail the problem of ambiguous measurements in pulsar navigation and then 
derives the upper bound for distance from a reference point. This upper bound is depend-
ent on the pulsar characteristics and defines the size of the “reference volume”. An algo-
rithm for calculating size of the reference volume is presented along with a detailed de-
velopment of how the size is affected by pulse model uncertainty. Finally, example calcu-
lations are presented using cataloged pulsars. [View Full Paper] 
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AAS 17-690 

COMPARATIVE STUDY OF TRACKING CONTROLLERS APPLIED 
TO MARTIAN AEROCAPTURE 

Benjamin W. L. Margolis* and Mohammad A. Ayoubi† 

In this paper, we present a comparison of three tracking controllers applied to a Martian 
aerocapture vehicle following an arbitrary trajectory: a Takagi-Sugeno Fuzzy Model 
(TSFM) based discrete-time model predictive controller (MPC), a TSFM based parallel 
distributed controller (PDC), and a finite-horizon linear quadratic regulator (LQR). The 
change in velocity (ΔV) required to bring the orbit of the controlled exit conditions to the 
orbit of the reference trajectory exit conditions is evaluated over a range of initial condi-
tion errors. [View Full Paper] 
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AAS 17-707 

LOW-THRUST GEO ORBIT TRANSFER GUIDANCE USING 
SEMI-ANALYTIC METHOD 

Li Xian,* Zhang Ran† and Han Chao‡ 

A low thrust GEO orbit transfer guidance is proposed based on the concept of semi-
analytic satellite theory. Three weights every segment of the orbital elements of a contin-
uous low thrust transfer are introduced, by changing which, shorter orbit transfer time 
and corresponding attitude angles of the spacecraft can be obtained. These parameters are 
computed from the minimum-time transfer employing unscented Kalman filter parameter 
estimation. This algorithm is simple and effective, to significantly reduce the computa-
tion load for the long-duration, many revolution trajectories. A numerical simulation of a 
GTO-GEO transfer is presented to demonstrate the proposed guidance scheme.  

[View Full Paper] 
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AAS 17-718 

OPERATIONAL EXPERIENCE AND ASSESSMENT OF THE 
IMPLEMENTATION OF THE MAPLET TECHNIQUE FOR 

ROSETTA’S OPTICAL NAVIGATION 

Francesco Castellini,* Ramon Pardo de Santayana,† 
Klaas Vantournhout‡ and Mathias Lauer§ 

For more than two years, the Rosetta spacecraft successfully navigated around comet 
67P, using landmark observations obtained from on-ground daily processing of images 
from its navigation cameras as main orbit determination observables. Landmark observa-
tions were made using a set of small digital elevation and albedo maps, called ‘maplets’. 
This paper describes in details ESOC’s maplet implementation, and analyses a vast oper-
ational data set (1.146 million observations of 10834 landmarks in 13788 images), as-
sessing the performances and robustness of this technique for optical navigation and 
showing its relevance in the success of the Rosetta mission. [View Full Paper] 
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AAS 17-742 

CONJUGATE UNSCENTED TRANSFORMATION BASED 
APPROACH TO COMPUTE HIGHER ORDER STATE TRANSITION 
MATRIX FOR NONLINEAR DYNAMIC SYSTEMS: APPLICATIONS 

TO UNCERTAINTY PROPAGATION 

Taewook Lee,* Puneet Singla† and Manoranjan Majji‡ 

In this paper, Conjugated Unscented Transformation (CUT) based approach is presented 
to compute higher order state transition matrices in a derivative free manner and a com-
putationally attractive manner. The proposed approach is non-intrusive in nature and is 
similar to stochastic collocation methods. The connection between stochastic collocation 
methods, geometric series methods and the conventional higher order state transition ma-
trix approach are discussed. The computed state transition matrices are valid over the de-
sired domain represented by a probability density function rather than valid along a single 
trajectory of a dynamical system. Benchmark problems corresponding to uncertainty 
propagation are considered to demonstrate the numerical efficiency and accuracy of the 
proposed ideas. [View Full Paper] 
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AAS 17-771 

DECENTRALIZED FUSION WITH FINITE SET STATISTICS FOR 
LANDING NAVIGATION 

James S. McCabe* and Kyle J. DeMars† 

The simultaneous localization and mapping (SLAM) problem is one that utilizes a vehi-
cle’s observations of its environment to refine an estimate of that environment while im-
proving understanding of its own state. This paper proposes the use of SLAM tools for-
mulated using finite set statistics to perform terrain-aided navigation for planetary 
landers. Further, the methodology is designed to augment, rather than replace, standard 
extended Kalman filter-based navigation architectures via decentralized fusion with feed-
back, enabling a SLAM-Fusion procedure with substantially lower development costs 
than replacing existing approaches altogether. The resulting approach enables significant 
performance improvements in existing navigation filters with little to no modification of 
the existing scheme. The theoretical results are supported via simulation of a lunar de-
scent trajectory and the proposed SLAM-Fusion procedure. [View Full Paper] 
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AAS 17-800 

PERSPECTIVE PROJECTION OF ELLIPSES AND ELLIPSOIDS 
WITH APPLICATIONS TO SPACECRAFT NAVIGATION 

John A. Christian* 

The use of cameras for spacecraft navigation has received considerable interest in recent 
years. Furthermore, such image-based navigation solutions have been proposed for cer-
tain aspects of both the absolute navigation and relative navigation problems. Within both 
of these application domains, it is common to encounter object contours with an elliptical 
shape. Elliptical arcs occur frequently because both ellipses (or circles) and ellipsoids (or 
spheres) appear as an ellipse in an ideal image formed by perspective projection (i.e. the 
pinhole camera model). This paper investigates this concept in detail and a number of 
important scenarios are considered. [View Full Paper] 
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AAS 17-811 

OPTIMIZATION OF IMPULSIVE EUROPA CAPTURE 
TRAJECTORIES USING PRIMER VECTOR THEORY 

Kevin A. Bokelmann* and Ryan P. Russell† 

The optimization of impulsive, three-dimensional transfer trajectories to capture at Euro-
pa is investigated. Primer vector theory is utilized to determine the number of impulses, 
and for the gradient information needed to optimize the problem. Two initial boundary 
conditions are considered: a halo orbit in the vicinity of Europa, and a resonant orbit 
around Jupiter. Optimization of previously generated, near-optimal halo-to-capture trans-
fers verifies that the predicted minimum ΔV is a good initial measure of optimality. Con-
versely it is found that the primer vector history is not a useful proxy for optimality for 
highly sensitive orbits. For the resonant boundary scenario, a new 3D periodic orbit is 
generated that incorporates natural transfers between a resonant orbit and a halo orbit. 
The intermediate halo orbit enables phase-free connection of the capture and resonant 
orbits. The highly-sensitive end-to-end transfer converges to a quasi-ballistic, manifold-
like trajectory. [View Full Paper] 
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AAS 17-831 

PRECISION FORMATION FLYING AND SPACECRAFT POINTING 
USING PLASMONIC FORCE PROPULSION 

Pavel Galchenko* and Henry Pernicka† 

Precision formation flying and spacecraft pointing for swarm mission concepts requires 
micropropulsion technologies and robust control solutions. Plasmonic force propulsion 
can provide nanonewton levels of thrust with which some spacecraft control can be real-
ized. This study considers the feasibility of providing precision pointing and orbit control 
using an array of plasmonic force thruster configurations within the constraints of system 
level design requirements of the CubeSat platform (with applicability to micro/nano/pico-
satellites in general). Results show that pointing and relative position can be maintained 
for a range of swarm precision formation flight missions. [View Full Paper] 
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AAS 17-835 

ORBIT TRANSFER TRAJECTORY DESIGN USING FINITE-BURN 
MANEUVER UNDER STEERING-ANGLE CONSTRAINTS 

Donghun Lee,* Dong-Hyun Cho,* Young-Joo Song,* Su-Jin Choi,† 
John Carrico‡ and Mike Loucks‡  

An orbit transfer problem using finite-burn maneuvers without or under a constraint on 
steering-angle of the thruster is considered. The time history of steering-angle is im-
portant in order to minimize delta-V loss for a finite burn maneuver. In this paper, the 
steering-angle profiles are designed both in the inertial reference frame and rotating 
frame, respectively. In addition, steering-angle profiles such as anti-velocity direction is 
also investigated, which can be applicable to a real space exploration mission. As an ex-
ample, an intermediate orbit design problem with finite-burn maneuvers is explained, and 
the results are presented. The performance with each steering-angle profile will be pre-
sented to compare the performance each other. [View Full Paper] 
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AAS 17-574 

NAVIGATION SYSTEM AND TRAJECTORY ANALYSIS FOR 
ACTIVE DEBRIS REMOVAL MISSION 

Naomi Murakami* and Toru Yamamoto† 

The key to realizing a safe approach toward such non-cooperative targets as on-orbit de-
bris is building a robust navigation system. However, non-cooperative targets lack any 
means to actively assist in relative measurement, thus making it difficult to realize robust 
navigation. And because debris removal missions must be cost-effective, the removal sat-
ellite is likely to lack sufficient resources. Thus, effective navigation sensors and other 
means are limited. In order to examine the feasibility of debris removal missions, the nav-
igation requirements for a safe approach must be clarified. Linear Covariance Analysis 
(LCA) is a powerful method of examining the applicability of a designed system, espe-
cially at an early study phase. By providing various navigation sensor errors and examin-
ing trajectory dispersions, the required levels of sensor performance can be obtained. In 
this study, we designed a navigation system and an approach trajectory for debris remov-
al missions, and examined trajectory safety using LCA. At the same time, we conducted a 
case study on the performance provided by different sensors and derived possible naviga-
tion requirements. [View Full Paper] 
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AAS 17-665 

HOVERING ORBIT CONTROL BASED ON CONTINUOUS THRUST 

Yinrui Rao,* Ran Zhang† and Chao Han‡ 

The region hovering orbit formed by periodic impulse control has been concerned in re-
cent years. Applicability of the impulsive control approach is limited because of its high 
fuel consumption. In this study, the hovering orbit control problem based on continuous 
thrust is exhaustively researched. Based on the Gaussian perturbed equation, an analytic 
constant continuous thrust control strategy for hovering orbit is derived. With the pro-
posed method, the fuel consumption for hovering orbit control can be effectively reduced. 
The effect of the control points on the required thrust is analyzed. Numerical simulations 
are conducted to demonstrate the proposed method’s efficacy. [View Full Paper] 
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AAS 17-733 

PRELIMINARY GN&C DESIGN FOR 
THE ON-ORBIT AUTONOMOUS ASSEMBLY OF 
NANOSATELLITE DEMONSTRATION MISSION 

Jing Pei,* Matt Walsh,† Carlos Roithmayr,‡ Chris Karlgaard,§ 
Mason Peck** and Luke Murchison†† 

Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology 
for future space structure assembly missions. The On-orbit Autonomous Assembly of 
Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to 
demonstrate the technology to autonomously dock two nanosatellites to form an integrat-
ed system. The team has developed a novel magnetic capture and latching mechanism 
that allows for docking of two CubeSats without precise sensors and actuators. The pro-
posed magnetic docking hardware not only provides the means to latch the CubeSats, but 
it also significantly increases the likelihood of successful docking in the presence of rela-
tive attitude and position errors. The simplicity of the design allows it to be implemented 
on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem 
capabilities on orbit, the GN&C subsystem should have a robust design such that it is ca-
pable of bringing the CubeSats from an arbitrary initial separation distance of as many as 
a few thousand kilometers down to a few meters. The main OAAN Mission can be sepa-
rated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous 
or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the prelim-
inary GN&C design and simulation results for each phase of the mission.  

[View Full Paper] 
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AAS 17-753 

SIMULATED FORMATION CONTROL MANEUVERS FOR 
THE RANGE CUBESAT MISSION 

Daniel Groesbeck,* Brian C. Gunter† and Kenneth Hart* 

The Ranging And Nanosatellite Guidance Experiment (RANGE) mission will fly two 
1.5U CubeSats in a leader-follower formation, using only differential drag to control their 
relative separation distance. To prepare for mission operations, a simulation was devel-
oped that involved the creation of a high-precision orbit propagation (HPOP) plugin for 
AGI’s Systems Tool Kit (STK) that accounts for rarefied flow characteristics and incor-
porates a maneuver control system. To evaluate the impact of using the rarefied flow 
model, various scenarios were run in high and low drag modes using the HPOP propaga-
tor, with and without the plugin activated. The difference was significant, showing differ-
ences at the kilometer level after several days of simulation. This analysis was compared 
to real mission positioning data from similar missions by Planet and Aerospace Corp. 
These comparisons allowed for the determination of an upper and lower bound of ex-
pected separation rates for RANGE. This enabled the creation of a series of control ma-
neuvers that will be used to maintain a stable (oscillating) orbit configuration for 
RANGE, as well as for increasing or decreasing the satellites relative distance within a 
fixed timeframe. [View Full Paper] 
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AAS 17-787 

AUTONOMOUS GUIDANCE ALGORITHMS FOR 
FORMATION RECONFIGURATION MANEUVERS 

Theodore Wahl* and Kathleen Howell† 

Spacecraft formations operating autonomously offer the potential to support a wide varie-
ty of missions. A proposed autonomous guidance algorithm for formation reconfiguration 
maneuvers is updated and expanded in this investigation. The guidance algorithm sepa-
rates the maneuver into two problems: assigning and then delivering the spacecraft. An 
improved auction process assigns the spacecraft to new positions, and two methods of 
delivering the spacecraft are examined. One is based on Artificial Potential Function 
(APF) guidance; alternatively, Model Predictive Control (MPC) guidance is explored. 
The performance of the guidance algorithm and its constituent pieces are assessed 
through simulations. [View Full Paper] 
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AAS 17-799 

GEOMETRIC CAMERA CALIBRATION USING NEAR-FIELD 
IMAGES OF THE ISS CENTERLINE DOCKING PLATE 

Andrew Rhodes,* John Christian† and Shane Robinson‡ 

The next generation of spacecraft will be capable of autonomously docking with the In-
ternational Space Station (ISS) and other space assets. While a variety of sensing solu-
tions exist, camera-based methods are an especially promising option. Achieving these 
relative navigation objectives, however, requires the camera to be well calibrated. Pre-
flight estimates of the geometric calibration parameters may be available, but on-orbit 
recalibration may be necessary due to environmental effects. Here, we propose that geo-
metric calibration for a navigation camera may be performed using a collection of images 
of the ISS’s centerline docking plate. Using this object for calibration permits a flexible 
approach that various spacecraft could use for geometric camera calibration.  

[View Full Paper] 
 

 

 

                                                                 
* Graduate Research Assistant, Statler College of Engineering and Mineral Resources, West Virginia University, P.O. 
Box 6201, Morgantown, West Virginia 26506, USA. 
† Assistant Professor, Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Insti-
tute, Troy, New York 12180, USA. 
‡ Aerospace Engineer, GN&C Autonomous Flight Systems Branch, NASA Johnson Spaceflight Center, Houston, Tex-
as 77058, USA. 

255

http://www.univelt.com/book=6641


  

AAS 17-821 

ΔV-OPTIMAL RENDEZVOUS MANEUVERS IN 
CIS-LUNAR HALO ORBITS AROUND EML2 

Davide Conte* and David B. Spencer† 

This paper presents solution techniques for finding Δv-optimal maneuvers to rendezvous 
with a target spacecraft in cis-lunar halo orbits around the Earth-Moon Lagrange point 2 
(EML2). This family of orbits was chosen due to the rising interest in cis-lunar space for 
human and robotic exploration. The dynamics and the stability of relative motion in the 
Circular Restricted Three-Body Problem (CR3BP) are analyzed using Floquet theory. In 
order to determine optimal maneuvers that the chaser spacecraft needs to accomplish to 
rendezvous with the target vehicle, simplified models of the relative motion in the 
CR3BP are explored and utilized, and compared to the full non-linear CR3BP model.  

[View Full Paper] 
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AAS 17-841 

DEVELOPMENT AND VALIDATION OF A GNC ALGORITHM 
USING A STEREOSCOPIC IMAGING SENSOR IN 

CLOSE PROXIMITY OPERATIONS 

Jill Davis,* Pavel Galchenko,* Donna Jennings* and Henry Pernicka† 

The stereoscopic imaging system used for conducting proximity operations with an in-
spector satellite near a noncooperative resident space object is validated using AGI’s Sys-
tems Tool Kit and the MATLAB environment. The guidance, navigation, and control al-
gorithms of the system are implemented using MATLAB, while an STK scenario acts as 
the truth model and provides the algorithms with sensor data. STK is also used for the 
graphical modeling and visualization. The stereoscopic imaging cameras are modeled in 
STK as conical sensors with specified fields of view. Custom angles created in STK then 
provide real time bearing angle data to the navigation filter, which determines the posi-
tion, velocity, and attitude of the inspector satellite and the relative position and velocity 
of the nRSO using complementary sensor data. These data are also extracted from the 
STK model through the MATLAB/Connect data provider commands, and include mag-
netometer, IMU, GPS, and Sun sensor data. [View Full Paper] 
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AAS 17-848 

COMPUTATIONALLY EFFICIENT METHODS FOR FUEL OPTIMAL 
PROXIMITY MANEUVERS WITH CONSTRAINTS* 

Eric R. Prince,† Ryan W. Carr‡ and Richard G. Cobb§ 

This paper develops low and high-fidelity models to generate fuel optimal guidance for 
an inspector satellite operating near a resident space object in geosynchronous orbit. The 
inspector satellite is assumed to employ an on/off thruster of finite nature, as opposed to 
using an impulsive burn approximation. The main goal of the inspector satellite in this 
study is to optimally maneuver into a prescribed natural motion circumnavigation orbit 
about the resident space object, subject to one of two possible lighting constraints. The 
first scenario, denoted a hard lighting constraint, ensures the inspector satellite aligns 
with the sun vector in the relative frame projected into the orbital plane, such that favora-
ble lighting conditions exist throughout the resulting natural motion. The second scenar-
io, denoted a soft lighting constraint, allows an angular margin from the sun vector, such 
that the satellite is close enough to the sun vector, allowing the maneuver cost to be fur-
ther minimized. The inspector satellite is assumed to perform a burn-coast-burn se-
quence, and an analytic propagation of the Hill-Clohessy-Wiltshire states given this fi-
nite-burn sequence is used to make the optimization routines computationally efficient. 
The lower-fidelity model uses this analytic propagation in both a particle swarm algo-
rithm and a nonlinear programming problem solver, where the nonlinear programming 
problem solver also uses analytic derivative information to assist in finding a solution. 
These solutions are then fed into the higher-fidelity model, a pseudospectral solver, as an 
initial guess, to obtain a solution using the general nonlinear equations of relative motion. 
The nonlinear programming problem solver’s performance is analyzed, with recommen-
dations on which specific algorithm to use depending on the lighting constraints.  

[View Full Paper] 
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AAS 17-552 

ATMOSPHERIC DENSITY ESTIMATION WITH 
LIMITED ORBIT TRACKING DATA 

Jinjun Shan* and Yuan Ren*  

Inaccurate atmospheric density is the biggest error source in orbit determination and pre-
diction. The commonly used empirical density models, such as Jacchia, NRLMSISE, 
DTM and Russian GOST, have a relative error of about 10 – 30%. Due to the uncertainty 
in the atmospheric density distribution, high accuracy estimation of the atmospheric den-
sity cannot be achieved by a deterministic model. Calibration of the atmospheric density 
model using up-to-date orbit tracking data may improve the model accuracy. However, 
this method has two main drawbacks. The first is that it is difficult to obtain enough suit-
able orbit tracking data. Sometimes the orbit tracking data is not enough to constitute an 
overdetermined system for coefficient identification, or the tracked orbits accumulate in a 
small region and cannot cover the full calibration region. The second is that there are only 
a limited number of objects that have known ballistic coefficients. Without a known bal-
listic coefficient, the density information cannot be separated from the orbit tracking data. 
In this paper, a novel algorithm is developed to calibrate the density model and estimate 
the unknown ballistic coefficients simultaneously. With the density information from the 
empirical model, this method can estimate the distribution of the atmospheric density ef-
fectively by using the incomplete orbit tracking data. Simulation results show the effec-
tiveness of the proposed calibration algorithm. [View Full Paper] 
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AAS 17-610 

DEFLECTION ASSESSMENT FOR 
A GRAVITY TRACTOR SPACECRAFT 

Shyam Bhaskaran* 

One proposed method to deflect a potential Earth impacting asteroid is via the “gravity 
tractor” method. Here, a spacecraft, hovering close to an asteroid using ion engines, uses 
its gravitational pull to change the asteroid’s orbit away from an impacting path. The 
proposed Asteroid Redirect Robotic Mission was slated to demonstrate the feasibility of 
this technique on the asteroid 2008EV5, and measure the amount of deflection. In this 
paper, the questions of how long the tractoring needs to be to cause a measurable deflec-
tion, and how the spacecraft can be used to measure it were examined. [View Full Paper] 
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AAS 17-611 

CONVERTING TO PHYSICAL COORDINATES WITH OR WITHOUT 
A FULL SET OF SENSORS BY EIGEN-DECOMPOSITION OF 

IDENTIFIED STATE-SPACE MODELS 

Dong-Huei Tseng,* Minh Q. Phan† and Richard W. Longman‡ 

This paper presents a method to convert an identified state-space model of a structure in 
an unknown and arbitrary coordinates to physical coordinates from which the structure 
mass, stiffness, and damping matrices can be recovered. The present method overcomes 
the high dimensionality associated with a Kronecker-based method for high degree-of-
freedom systems. A full set of sensors is not required. One sensor or one actuator is re-
quired per degree of freedom and at least one collocated pair of sensor and actuator is 
necessary for unique conversion of the model to physical coordinates. [View Full Paper] 
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AAS 17-612 

MASS STIFFNESS AND DAMPING MATRICES FROM 
STATE-SPACE MODELS IN PHYSICAL COORDINATES BY 

EIGEN-DECOMPOSITION OF A SPECIAL MATRIX 

Dong-Huei Tseng,* Minh Q. Phan† and Richard W. Longman‡ 

This paper presents a method to recover the mass, stiffness, and damping matrices from 
an identified state-space model of a flexible structure in physical coordinates. The pro-
posed solution is simple and computationally efficient for high degree-of-freedom sys-
tems. The method preserves the symmetry of the mass, stiffness, and damping matrices in 
the presence of noise. Any combination of displacements, velocities, accelerations can be 
used as measurements. [View Full Paper] 
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AAS 17-663 

PRELIMINARY STUDY OF THE LUNAR PHYSICAL LIBRATIONS 
BY VLBI OBSERVATIONS OF CHANG’E-3 LUNAR LANDER 

Zhongkai Zhang,* Songtao Han† and Lan Du‡ 

The successful landing of the Chang’E-3 on the Moon opened up the window for observ-
ing the Moon with VLBI again. In this study, the method using VLBI observations of ar-
tificial sources on the lunar surface to estimate the Euler angles and lunar librations pa-
rameters is described and corresponding formulations are derived. VLBI observations of 
Chang’E-3 lunar lander were used to preliminarily estimate the Euler angles along with 
the lander position coordinates. The results showed that the Euler angles can be estimated 
along with the position coordinates of the lunar lander using the method described and 
applying the estimated Euler angle corrections could decrease the standard deviations of 
the lander position coordinates. [View Full Paper] 
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AAS 17-664 

USE OF ADVANCED STATISTICAL TECHNIQUES FOR 
MISSION ANALYSIS: CASE STUDY FROM 

A GOOGLE LUNAR X TEAM (SPACEIL) 

David Shteinman,* Zdravetz Lazarov† and Yu-Heng Ting‡ 

Lunar X prize teams are competing to be the first non-governmental spacecraft to soft 
land on the Moon. All the teams have small budgets that are severe restrictions for mis-
sion designers. Hence it is necessary to rely heavily on historical data analysis and simu-
lation to characterize and quantify expected performance of mission components. Statisti-
cal methods such as Exploratory Data Analysis (EDA), Time Series Analysis and Design 
& Analysis of Computer Experiments (DACE) are ideally suited to the task of delivering 
maximum information on the operating windows of expected performance at minimum 
cost. A case study is presented from a Lunar X team (SpaceIL) using statistical methods 
to characterize the expected performance of the Universal Space Network (USN) tracking 
stations to be used in the mission, using residuals data from the NASA Lunar Reconnais-
sance Orbiter mission (LRO). A moving window Time Series method was used to model 
the occurrence and duration of jumps in residuals. A feature of our method is the ability 
to isolate transient signals (e.g. jumps) from the usual noise for improved characterization 
of tracking performance. The EDA process revealed features such as bimodal distribution 
of data at some stations, and periodic patterns in the autocorrelation between residual 
values by day and by pass. These actual tracking performance measures will be used as 
inputs to a simulation tool for performance analysis of SpaceIL’s orbit determination ca-
pabilities. To maximize the information from the minimum number of simulation runs we 
outline the use of statistical DACE – a method adapted from industrial experiments that is 
highly efficient at determining input/output functional relationships in complex multivar-
iate systems. The case study indicates a way forward for increased use of statistical tools 
and approaches in Mission Design and Analysis, by adapting methods from other disci-
plines such as econometrics and industrial experimentation. [View Full Paper] 
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AAS 17-666 

THE STUDY OF ONLINE LEARNING RECOGNITION METHOD OF 
THE SPACE TUMBLING NON-COOPERATIVE TARGET BASED 

ON SMALL SATELLITE PLATFORM 

Xiong Zixuan,* Feng Dongzhu,† Yu Hang,‡ 
Wang Zexiang,* Wen Tongge,* Li Xinfang* and Cao Fuzhi*  

In most space scenarios, the object to be detected is unknown in advance, and there is no 
prior knowledge. In other words, the target is arbitrary and only specified at runtime, 
which leads to trouble tracking to account for the scale changes and spinning during ob-
ject motion, lighting conditions and occlusion. Arbitrary targets now are widely tracked 
by adaptive tracking-by-detection methods in computer vision. And the recognition prob-
lems are treated as classification task. By online learning, the classifiers can update the 
object model for better recognition result. For a high accuracy and real-time recognition, 
this paper develops a recognition method for the space tumbling non-cooperative target 
based on small satellite platform. The method is based on a Support Vector Machine al-
gorithm to recognize a space tumbling target. Online learning as a part of the algorithm 
improves the accuracy of recognition. A simulation system is established based on 
C++/STK to verify the validity and evaluate the performance of the proposed algorithm. 
With comparisons of 3 different recognition algorithms, the conclusion is that the tum-
bling non-cooperative target can be accurately recognized and tracked on real-time by 
taking the advantage of the proposed algorithm. [View Full Paper] 
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AAS 17-678 

TIMING COEFFICIENT AND SOLAR LUNAR PLANETARY 
EPHEMERIS FILES VALID OVER VERY LONG TIME INTERVALS 

AND THEIR APPLICATION IN NUMERICAL AND 
SEMIANALYTICAL ORBIT PROPAGATION 

Zachary Folcik* and Paul J. Cefola† 

Time differences and solar, lunar, and planetary (SLP) ephemeris data are used in preci-
sion orbit determination applications. The Linux GTDS and DSST Standalone orbit prop-
agator programs use low-degree polynomials to approximate the time differences be-
tween the atomic, UTC, and UT1 time systems. Low-degree polynomials also are used 
for the polar motion parameters. Chebyshev polynomials are used to represent the SLP 
ephemerides and the rotation matrices. These approximations reduce storage and runtime 
for orbit propagation and for orbit determination. Previously, representation of 50 years 
of timing and third body positional data has been demonstrated. The current work repro-
duces the timing coefficient and SLP files using a Linux version of the TRAMP program 
and extends the time duration of these files to 200 years. [View Full Paper] 
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AAS 17-683 

POISSON-DARBOUX PROBLEM’S EXTENDED IN 
DUAL LIE ALGEBRA 

Daniel Condurache* 

The main goal of this research is the development of a new approach of Poisson-Darboux 
problem solution in dual Lie algebra. Using the isomorphism between the Lie group of 
the rigid displacements SE3 and Lie group of the orthogonal dual tensors SO3 a new solu-
tion of this problem is given by recovering the rigid motion knowing its twist. The solu-
tion is the replica of the classical Poisson-Darboux problem in the algebra of dual num-
bers. The results are applied for giving a representation theorem of the six degrees of 
freedom relative orbital motion problem. Using the n-th order Cayley transformation of 
dual vectors, the minimal representation of this problem is obtained. The novelty of the 
method over existing solutions is discussed and the main advantages are revealed.  

[View Full Paper] 
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AAS 17-780 

USING SPHERICAL HARMONICS TO 
MODEL SOLAR RADIATION PRESSURE ACCELERATIONS 

Ariadna Farrés,* Dave Folta† and Cassandra Webster‡ 

Solar Radiation Pressure (SRP) is the acceleration produced by the impact of the photons 
emitted by the Sun on the surface of a satellite. The incident photons are absorbed and 
reflected by the different components on the satellite’s surface, where the rate of absorp-
tion and reflection depends on the properties of the satellite’s surface material. The accel-
eration produced by SRP plays an important role on the design and navigation of Libra-
tion Point Orbits and interplanetary trajectories. In this paper we introduce an alternative 
way to obtain high fidelity models for the SRP acceleration using a Spherical Harmonic 
approximation. [View Full Paper] 
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AAS 17-577 

LOW EXCESS SPEED TRIPLE CYCLERS OF 
VENUS, EARTH, AND MARS 

Drew Ryan Jones,* Sonia Hernandez* and Mark Jesick*  

Ballistic cycler trajectories which repeatedly encounter Earth and Mars may be invalua-
ble to a future transportation architecture ferrying humans to and from Mars. Such trajec-
tories which also involve at least one flyby of Venus are computed here for the first time. 
The so-called triple cyclers are constructed to exhibit low excess speed on Earth-Mars 
and Mars-Earth transit legs, and thereby reduce the cost of hyperbolic rendezvous. Thou-
sands of previously undocumented two synodic period Earth-Mars-Venus triple cyclers 
are discovered. Many solutions are identified with average transit leg excess speed below 
5 km/sec, independent of encounter epoch. The energy characteristics are lower than pre-
viously documented cyclers not involving Venus, but the repeat periods are generally 
longer. [View Full Paper] 

 

 

 

                                                                 
* Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak 
Grove Drive, Pasadena, California 91109, USA. 

273

http://www.univelt.com/book=6655


  

AAS 17-586 

OPERATIONAL ASPECTS AND LOW THRUST TRANSFERS FOR 
HUMAN-ROBOTIC EXPLORATION ARCHITECTURES IN THE 

EARTH-MOON SYSTEM AND BEYOND 

Florian Renk,* Markus Landgraf† and Max Roedelsperger‡ 

In the frame of the International Space Exploration Coordination Working Group 
(ISECG) the European Space Agency is participating in the planning of future explora-
tion architectures. This participation also puts new challenges on the mission analysis of 
such architectures, since the mission analysis for an exploration architecture design is 
significantly different from the one of a single mission design. E.g. vehicles are usually 
staged, rendezvous and docking possibility significantly increases the trade space be-
tween different options. This also changes the operational aspects for these architectures 
compared to single spacecraft robotic science missions. While many orbit types in the 
Earth-Moon system as e.g. Low Lunar Orbits (LLO), Lissajous and Halo Libration Point 
Orbits (LPO), Distant Retrograde Orbits (DRO) or Nearly Rectilinear Orbits (NRO) as 
well as the associated transfer scenarios are well studied from a theoretical point of view, 
this paper will focus on the operational aspects to fly missions towards these destinations 
and to operate them there. This will include the discussion on the availability of transfer 
windows, availability of communication links, orbit determination requirements as well 
as the requirements for the rendezvous of spacecraft far from Earth or the treatment of 
contingency scenarios. Especially the latter point is of interest, since e.g. the libration 
point orbits are inherently unstable and thus recovery scenarios in case of e.g. missed sta-
tion-keeping manoeuvres or unforeseen accelerations must be defined and considered in 
the operational scenario. A further aspect in the paper will be the operational require-
ments for the transfer of the exploration infrastructure hub between the different destina-
tions to optimally support the various envisioned exploration missions (e.g. lunar surface 
access, interplanetary departure to an asteroid, servicing of Sun-Earth Libration Point ob-
servatories). These transfers are required, since none of the available orbit options is op-
timal for all exploration mission scenarios. Since the initial exploration hub will only be 
man-tended, the transfers between different orbits are not required to be fast, but the hub 
can use either low energy transfers or e.g. solar electric propulsion (SEP) for the orbit 
manoeuvres in order to reduce the required propellant mass and thus reduce logistic costs.  

[View Full Paper] 
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AAS 17-630 

SINGLE CYCLER TRAJECTORIES FOR MARS EXPLORATION 

Buzz Aldrin,* Brian D. Kaplinger,† Anthony Genova,‡ Robert Potter,§ 
Alec Mudek,§ Archit Arora,§ Sarag Saikia** and James M. Longuski†† 

This paper presents several options for symmetric Earth-Mars cycling trajectories that 
could be conducted using a single cycler vehicle. Current cycling architectures propose at 
least two vehicles in order to ensure both short Earth-Mars and Mars-Earth deep space 
travel time. The options presented include both countable ballistic solutions as well as 
continuous families of ballistic and near-ballistic (< 50 m/s/period) solutions. Representa-
tive trajectories from the initial ballistic and near-ballistic solution sets from a circular-
coplanar model are demonstrated, and a mission timeline utilizing this type of trajectory 
is proposed. [View Full Paper] 
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AAS 17-643 

A FIRST LOOK AT THE NAVIGATION DESIGN AND ANALYSIS 
FOR THE ORION EXPLORATION MISSION 2 

Chris D’Souza* and Renato Zanetti† 

This paper will detail the navigation and dispersion design and analysis of the first Orion 
crewed mission. The optical navigation measurement model will be described. The vehi-
cle noise includes the residual acceleration from attitude deadbanding, attitude maneu-
vers, CO2 venting, waste-water venting, ammonia sublimator venting and solar radiation 
pressure. The maneuver execution errors account for the contribution of accelerometer 
scale-factor on the accuracy of the maneuver execution. Linear covariance techniques are 
used to obtain the navigation errors and the trajectory dispersions as well as the DV per-
formance. Particular attention will be paid to the accuracy of the delivery at Earth Entry 
Interface and at the Lunar Flyby. [View Full Paper] 
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AAS 17-648 

HYPERBOLIC ABORT OPTIONS FOR 
HUMAN MISSIONS TO MARS 

B. Aldrin,* P. Witsberger,† R. Potter,‡ J. Millane,§ S. Saikia,**  
B. Kaplinger†† and J. Longuski‡‡ 

Cycler trajectories have become an important component of Earth-to-Mars transportation 
systems. A salient feature of such trajectories is the necessity of achieving hyperbolic 
rendezvous, a requirement that if not met can result in loss of crew. The concept of hy-
perbolic rendezvous has been met with skepticism. In this paper, we review standard 
methods for hyperbolic rendezvous and introduce some new approaches that allow for 
improved abort options. The abort options considered also apply to human missions to 
Mars that do not involve cycler trajectories. [View Full Paper] 
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AAS 17-652 

LOW-THRUST TRAJECTORY MAPS (BACON PLOTS) TO 
SUPPORT A HUMAN MARS SURFACE EXPEDITION 

Ryan C. Woolley,* John D. Baker,† Damon F. Landau‡ and Kevin E. Post§ 

Planning the logistics of multiple launches to support a Mars surface expedition requires 
good trajectory design tools. Traditional ballistic transfers are well characterized by per-
formance maps known as porkchop plots. However, the transportation of cargo can bene-
fit from the use of low-thrust solar electric propulsion, both in terms of mass delivered 
and the flexibility of flight durations and dates. This paper describes the design and use of 
bacon plots (the low-thrust analog to porkchop plots) and their application to the architec-
tural design of a human Mars surface expedition. [View Full Paper] 
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AAS 17-826 

STATIONKEEPING AND TRANSFER TRAJECTORY DESIGN FOR 
SPACECRAFT IN CISLUNAR SPACE 

Diane C. Davis,* Sean M. Phillips,† Kathleen C. Howell,‡  
Srianish Vutukuri§ and Brian P. McCarthy§  

NASA’s Deep Space Gateway (DSG) will serve as a staging platform for human mis-
sions beyond the Earth-Moon system and a proving ground for inhabited deep space 
flight. With a Near Rectilinear Halo Orbit (NRHO) serving as its primary long-term orbit, 
the DSG is planned to execute excursions to other destinations in cislunar space. The cur-
rent study explores the details of generating NRHOs in high-fidelity force models. It then 
investigates the cost of stationkeeping the primary and destination orbits. Finally, Poinca-
ré maps are employed in a visual design process for preliminary transfer design between 
candidate orbits in cislunar space. [View Full Paper] 
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AAS 17-621 

THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE 
(ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS 
SPECIALIST CONFERENCE STUDENT COMPETITION 

Jason A. Reiter,* Davide Conte,* Andrew M. Goodyear,* Ghanghoon Paik,* 
Guanwei He,* Peter C. Scarcella,* Mollik Nayyar* and Matthew J. Shaw*  

We present the methods and results of the Astrodynamics Research Group of Penn State 
(ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. 
A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in 
order to determine its mass and volume and to map and characterize its surface. This data 
would prove useful in determining the necessity and usefulness of future missions to the 
asteroid. The mission was designed such that a balance between cost and maximizing ob-
jectives was found. [View Full Paper] 
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AAS 17-744 

THE NEAR-EARTH ASTEROID CHARACTERIZATION AND 
OBSERVATION (NEACO) MISSION 

Chandrakanth Venigalla,* Nicola Baresi,* Jonathan Aziz,*  
Benjamin Bercovici,* Gabriel Borderes Motta,† Daniel Brack,*  

Josué Cardoso dos Santos,† Andrew Dahir,* Alex B. Davis,* Stijn De Smet,* 
JoAnna Fulton,* Nathan Parrish,* Marielle Pellegrino* and Stefaan Van wal*  

The Near-Earth Asteroid Characterization and Observation (NEACO) mission proposes 
to explore the fast-rotating asteroid (469219) 2016 HO3 with a SmallSat spacecraft and 
perform an early scientific investigation to enable future, more in-depth missions. The 
NEACO spacecraft is equipped with a low-thrust, solar electric propulsion system to 
reach its target within two years, making use of an Earth gravity assist. Its instrument 
suite consists of two optical cameras, a spectrometer, an altimeter, and an explosive im-
pactor assembly. Upon arrival at HO3, NEACO uses pulsed plasma thrusters to hover, 
first at a high altitude of 50 km to perform lit surface mapping and shape modeling, and 
later at a lower altitude of 10 km to refine these models and perform surface spectrosco-
py. Following the hovering phases, the spacecraft performs several flybys with decreas-
ing periapses in order to estimate the asteroid’s mass. Finally, NEACO uses an additional 
flyby to release an explosive impactor that craters the asteroid surface. After spending a 
few weeks at a safe hovering distance, the spacecraft returns and images the crater and 
freshly exposed sub-surface material. This provides information on the strength of the 
asteroid surface. The science operations are completed within eight months, with the total 
mission lasting less than three years. The objectives met by the NEACO mission satisfy 
all science goals for the student competition of the 2017 AAS Astrodynamics Specialist 
Conference. [View Full Paper] 
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AAS 17-754 

THE FRONTIER MISSION DESIGN DOCUMENT 

Jigisha Sampat,* Yufeng Luo,* Jasmine Thawesee* and Isabel Anderson* 

The recently discovered small asteroid by the name 2016 HO3 is known to be a compan-
ion to Earth while it orbits around the sun. The asteroid has a very similar orbit to Earth’s 
and has been a stable quasi-satellite of the Earth for over a century and will continue to 
follow this pattern for centuries to come. Although it has been around for so long, it only 
came to our notice very recently and hence, very little is known to us about this satellite. 

The Frontier satellite mission aims to study 2016 HO3’s spectral properties, map its sur-
face, and create a global shape model. The satellite uses Lambert’s equations of orbital 
relative motion to travel along the asteroid in its orbit around the sun while mapping it 
from different directions. While staying outside the field of influence of the asteroid, the 
satellite will be able to map its surface at 10 m2 resolution. It will also be able to provide 
input on the morphology of the planet, its surface composition, overall size, and shape 
and spin characteristics. [View Full Paper] 
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AAS 17-770 

NEO: MISSION PROPOSAL FOR ASTEROID (469216) 2016 HO3 

Matthew Heacock,* Katherin Larsson,* 
Matthew Brandes* and Nathan McIntosh* 

The satellite mission concept was developed in response to the AAS/AIAA Student 
Competition request for the 2017 Astrodynamics Specialist Conference. The competition 
asked for a small satellite mission to Asteroid (469219) 2016 HO3, henceforth referred to 
as Asteroid HO3, that could be a secondary payload with the intention to observe and col-
lect data about the asteroid, that lies in a quasi-orbit about the Earth. The satellite mission 
was developed to satisfy Goals 3, 4, 5 and 7 from the problem statement. In addition to 
the above given goals, NEO will be primarily composed of off the shelf parts to demon-
strate the ability to design science missions with a low barrier to entry and reduce risk. 
NEO must also be less than 140 kg wet mass and shall fit on an ESPA ring.  

[View Full Paper] 
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AAS 17-817 

FORTUNE: A MULTI-CUBESAT, NEAR-EARTH ASTEROID 
PROSPECTING MISSION 

J. R. Elliott,* E. Shibata,† P. A. Witsberger,†‡ J. L. Pouplin,† R. J. Rolley,†  
P. Podesta† and J. D. Ianev§ 

Asteroids present a unique resource gathering opportunity, since materials gathered from 
the asteroid do not need to be launched from the Earth’s surface. Potential resources in-
clude metals for construction purposes and water for fuel. Recently discovered asteroid 
2016 HO3 resides in a quasi-orbit about Earth, making it an attractive target for asteroid 
mining purposes. In this paper we present a multi-CubeSat mission for prospecting and 
assessing 2016 HO3’s potential for resource mining. The mission consists of a 12U Cu-
beSat orbiter that will image the asteroid in the visible wavelengths. X-ray and near-
infrared spectra will be obtained. In addition to the orbiter, a 12U impactor system will 
deliver a 1.35U copper impactor approximately 37 days after the orbiter’s arrival. The 
orbiter will observe the impact, study the resulting crater, and take spectra of subsurface 
material excavated during the impact. An analogy-based cost model was developed, and 
mission cost was found to be $38 million in FY17$. [View Full Paper] 
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AAS 17-843 

HO3 ASTEROID RENDEZVOUS EXPLORER – H.A.R.E. 

Matthew Austin,* Larissa Balestrero,* Anthony Genova,* Fernando Aguirre,† 
Muzammil Arshad,* Max Skuhersky,* Mathieu Plaisir,* Filippo Mazzanti,* 

Nashaita Patrawalla,† Joshua Newman,† Stephen Sullivan,*  
Tanner Johnson,* Connor Nelson† and Evan Smith†  

HO3 Asteroid Rendezvous Explorer (HARE) serves as a prototype for analyzing the 
characteristics of asteroid 2016 HO3 using a low-mass spacecraft. Primary objectives of 
this mission include imaging the asteroid, determining its mass and volume over a specif-
ic area, measuring the spectral properties of its surface, and measuring surface hardness. 
HARE outlines how each of these objectives will be met and the spacecraft meets the 
mass requirement of less than 140 kg. In addition to the spacecraft structure, the trajecto-
ry being utilized is thoroughly outlined. [View Full Paper] 
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AAS 17-846 

BLOCK-LIKE EXPLORER OF A NEAR-EARTH BODY BY 
ACHIEVING ORBITAL PROXIMITY (BEEBOP) 

Kristofer Drozd,* Ethan Burnett,† Eric Sahr,‡ Drew McNeely,‡  
Vittorio Franzese§ and Natividad Ramos Moron§  

BEEBOP is a remote sensing space mission designed to investigate 2016 HO3, an aster-
oid recently discovered that lies in a quasi-orbit about the Earth. This mission is designed 
as a precursor operation such that enough information about 2016 HO3 can be collected 
so future endeavors to the asteroid, if necessary, will have a higher probability of success. 
To drive down cost, a 6 U CubeSat with was selected as BEEBOP’s spacecraft. Optimal 
trajectories from Earth to 2016 HO3 were constructed by means of the Calculus of Varia-
tions and Indirect Method. Proximity operation trajectories were found by propagating 
the spacecraft forward in time within a developed model representing the environment 
around 2016 HO3. The Zero-Effort-Miss/Zero-Effort-Velocity Guidance Algorithm was 
utilized to maneuver between these trajectories. Lastly, the spacecraft subsystems were 
formed through multiple iterations until volumetric, mass, power, thermal, and science 
requirements were met. [View Full Paper] 
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AAS 17-578 

NAVIGATION AUTOMATION FOR 
THE SOIL MOISTURE ACTIVE PASSIVE OBSERVATORY 

Robert Haw,* Min-Kun Chung,* Ram Bhat,*  
Jessica Williams,† Maximilian Schadegg* and Julim Lee*  

Soil Moisture Active Passive (SMAP) is a NASA Earth science mission designed to 
measure soil moisture content and freeze/thaw cycles over a three-year period. This paper 
presents a 2-year summary of navigation performance, shows navigation compliance (and 
non-compliance) with Science Orbit Requirements, and describes how automated pro-
cesses appreciably reduced the size of the navigation team. [View Full Paper] 
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AAS 17-583 

LOW THRUST CIS-LUNAR TRANSFERS USING A 40 KW-CLASS 
SOLAR ELECTRIC PROPULSION SPACECRAFT 

Melissa L. McGuire,* Laura M. Burke,† Steven L. McCarty,‡ Kurt J. Hack,§ 
Ryan J. Whitley,** Diane C. Davis†† and Cesar Ocampo‡‡ 

This paper captures trajectory analysis of a representative low thrust, high power Solar 
Electric Propulsion (SEP) vehicle to move a mass around cislunar space in the range of 
20 to 40 kW power to the Electric Propulsion (EP) system. These cislunar transfers de-
part from a selected Near Rectilinear Halo Orbit (NRHO) and target other cislunar orbits. 
The NRHO cannot be characterized in the classical two-body dynamics more familiar in 
the human spaceflight community, and the use of low thrust orbit transfers provides 
unique analysis challenges. Among the target orbit destinations documented in this paper 
are transfers between a Southern and Northern NRHO, transfers between the NRHO and 
a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different 
Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and 
EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that 
meet current abort and communication requirements for human mission planning.1 Inves-
tigation is done into the sensitivities of these low thrust transfers to EP system power. 
Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems 
and the ability to transit between these unique orbits are investigated. [View Full Paper] 
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AAS 17-585 

OVERVIEW OF 
THE MISSION DESIGN REFERENCE TRAJECTORY FOR 

NASA’S ASTEROID REDIRECT ROBOTIC MISSION 

Melissa L. McGuire,* Nathan J. Strange,† Laura M. Burke,‡ 
Steven L. McCarty,§ Gregory B. Lantoine,** Min Qu,†† Haijun Shen,‡‡  

David A. Smith,§§ and Matthew A. Vavrina*** 

The National Aeronautics and Space Administration’s (NASA’s) recently cancelled As-
teroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus 
class near-Earth asteroid and provide the capability to capture and retrieve a boulder off 
of the surface of the asteroid and bring the asteroidal material back to cislunar space.1 
Leveraging the best of NASA’s science, technology, and human exploration efforts, this 
mission was originally conceived to support observation campaigns, advanced solar elec-
tric propulsion, and NASA’s Space Launch System heavy-lift rocket and Orion crew ve-
hicle. The asteroid characterization and capture portion of ARM was referred to as the 
Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and 
then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 
EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where as-
tronauts would visit and study it. The purpose of this paper is to document the final refer-
ence trajectory of ARRM and the challenges and unique methods employed in the trajec-
tory design of the mission. [View Full Paper] 
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AAS 17-632 

LUCY: NAVIGATING A JUPITER TROJAN TOUR 

Dale Stanbridge,* Ken Williams,* Bobby Williams,* Coralie Jackman,*  
Harold Weaver,† Kevin Berry,‡ Brian Sutter§ and Jacob Englander‡  

In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. 
These six bodies, remnants of the primordial material that formed the outer planets, were 
captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system for-
mation. These particular bodies were chosen because of their diverse spectral properties 
and the chance to observe up close for the first time two orbiting approximately equal 
mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier 
for the Lucy mission. This paper describes preliminary navigation analyses of the ap-
proach phase for each Trojan encounter. [View Full Paper] 
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AAS 17-671 

FEATURES AND CHARACTERISTICS OF 
EARTH-MARS BACON PLOTS 

Robert Potter,* Ryan Woolley,† Austin Nicholas‡ and James Longuski§ 

Solar electric propulsion (SEP) uses low-thrust trajectories to deliver larger payloads 
compared to conventional ballistic trajectories. In this paper, we discuss the uses and in-
sights provided by a relatively new mission design tool, the bacon plot, for Earth to Mars 
trajectories. The bacon plot is analogous to ballistic porkchop plots but for low-thrust 
missions and helps to visualize many parameters important to low-thrust missions such as 
delivered payload, maximum and minimum heliocentric distance, propellant require-
ments, launch window size, and required times of flight. A design scenario for a Mars 
SEP orbiter is presented to illustrate how mission designers use bacon plots. We also pre-
sent a new tool that allows for the fast and easy estimation of a SEP spacecraft’s optimal 
power, thrust, trajectory, and required propellant, through the use of a bacon plot estima-
tor that can be run in seconds instead of hours. [View Full Paper] 
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AAS 17-674 

IMPROVEMENTS TO A HIERARCHICAL MIXTURE OF 
EXPERTS SYSTEM USED FOR CHARACTERIZATION OF 

RESIDENT SPACE OBJECTS 

Elfego Pinon III,* Jessica Anderson,† Angelica Ceniceros,‡ Brandon Jones,§ 
Ryan Russell,** Noble Hatten†† and Nicholas Ravago‡‡ 

Part of the Space Situational Awareness (SSA) problem involves detecting, tracking, 
identifying and characterizing resident space objects (RSOs). Emergent Space Technolo-
gies, Inc. has conducted SSA research, sponsored by the Air Force Research Laboratory 
(AFRL), focused on the use of Hierarchical Mixtures of Experts (HMEs) to process simu-
lated electro-optical measurements to determine RSO characteristics such as attitude pro-
file, size, and shape. This paper discusses recent efforts to improve the performance of 
the HME by integrating it with advanced bidirectional reflectance distribution function 
(BRDF) models, a finite set statistics (FISST) based algorithm for detecting and tracking 
RSOs, and advanced propagators. Test results using simulated observation data are pre-
sented. [View Full Paper] 
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AAS 17-680 

USING TETHERS TO BUILD A “CAPTURE PORTAL” 
FOR THE PLANETS 

A. F. S. Ferreira,* A. F. B. A. Prado,† A. D. Guerman,‡ D. P. S. Santos,§ 
A. Burov** and O. C. Winter†† 

Several new applications of space tethers to maneuver spacecrafts have been suggested 
recently. Some of them are combinations with the sling shot effect used in several inter-
planetary missions. In one type of this family of applications, the tether is attached to an 
asteroid to make a rotation of the spacecraft, so giving energy to send it to the exterior 
planets of the Solar System or beyond. A similar idea is to make the capture of space-
crafts by a planet of the Solar System using tethers fixed on their moons. In both of these 
proposals, the tether is carried on-board the spacecraft and anchored to the celestial body 
during the approach phase. Another possibility is to build an "Escape Portal" using a 
tether permanently fixed in an asteroid to give energy to spacecrafts to go to the outer 
planets. The present paper explores in more detail a combination of those two proposals 
to build a "Capture Portal" for the planets. The main idea is to build a permanent struc-
ture fixed on one of the moons of a given planet, so that it can be used for an unlimited 
number of maneuvers. With this goal, this research searches for equilibrium points that 
can be used to place the above structures. The type of force in the tether and the stability 
of the points are also considered. The results shown here can give some insights in the 
problems that appear when building such “Capture Portal”. [View Full Paper] 
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AAS 17-700 

ANALYTICAL AND STATISTICAL CHARACTERIZATIONS OF 
THE LONG TERM BEHAVIOR OF A CLOUD OF DEBRIS 

GENERATED BY A BREAK-UP IN ORBIT 

Florent J. Deleflie,* Delphine Thomasson,† Walid Rahoma,‡ 
Alexis Petit§ and Michel Capderou** 

This paper provides an analytical formulation of the time required to form a cloud that 
can be considered as a randomly distributed one around the Earth after a breakup of a sat-
ellite. Starting with a set of arbitrary ΔV, we determine typical values of the mean chang-
es of velocity within the cloud that enable to describe the changes induced on the initial 
orbital keplerian elements. The sensitivity of the approach is investigated, and a compari-
son with Fengyun-1C TLE data sets is provided. The study is carried out following an 
analytical approach jointly with a statistical characterization. [View Full Paper] 
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AAS 17-702 

ANALYSIS OF 
GEOSTATIONARY SATELLITE CONJUNCTION MONITORING 

Yoola Hwang* and Byoung-Sun Lee† 

As geostationary satellites are increasing, the numbers of operating satellites placed at the 
same or close longitude are growing up. Two Line Elements (TLE) can be easily used to 
monitor and analyze the satellites located at same or close longitude for collision moni-
toring. However, TLE in accuracy is not enough to perform maneuver for collision 
avoidance. In this paper, we monitor the collision risk by calculating the distances be-
tween two satellites at each epoch using TLE, operational orbit, and conjunction data 
message (CDM). In addition, we study the reliability of TLE by comparing the North 
American Aerospace Defense Command (NORAD) TLE converted to osculating orbit 
and propagated with the actual operational osculating orbit. We also discuss about the 
conjunction monitoring differences between NORAD TLE propagated using our dynamic 
models and Joint Space Operations Center (JSpOC) CDM based on our experiences in 
the view of the satellite operator. [View Full Paper] 
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AAS 17-735 

DETERMINING LOCATIONS AND TRANSFERS OF ARTIFICIAL 
EQUILIBRIUM POINTS IN A DOUBLE ASTEROID SYSTEM 

Geraldo Magela Couto Oliveira,* Allan Kardec de Almeida Junior† 
and Antônio Fernando Bertachini de Almeida Prado‡ 

In the absence of a solar sail, the traditional Lagrange points L1 and L2 are the only equi-
librium points near the asteroid 243 Ida, which is located in the asteroid belt. The use of a 
solar sail in the spacecraft gives new configurations of equilibrium points, which depend 
on positions and the inclination of the vector normal for the solar sail with respect to the x 
axis. These new configurations of equilibrium points are the so called artificial equilibri-
um points (AEP). A solar sail allows a spacecraft to park closer to the body that is the 
object of study. Besides that, new perspectives for viewing above or below the ecliptic 
plane can be reached through the use of a solar sail to observe the body from a stationary 
condition. The main idea of this manuscript is to obtain the new locations of those points 
and to calculate the costs to transfer a spacecraft between those points, as well as to show 
some options to minimize those costs. [View Full Paper] 
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AAS 17-751 

DYNAMICS OF A SPACE TETHER IN BINARY ASTEROIDS 

A. F. S. Ferreira,* A. F. B. A. Prado,† A. D. Guerman,‡ D. P. S. Santos,§  
A. Burov** and O. C. Winter†† 

The present paper studies the dynamics of space elevators constructed in double asteroids 
of the solar system, assuming an irregular shape for both bodies. To make this task, a 
tether is attached to the surface of one of the asteroids, with a spacecraft attached in the 
other end. The analysis of the equilibrium points to place the tether and the stability of 
those solutions are made. The irregularities of the bodies, assumed to be ellipsoids, are 
described by the coefficients of a spherical harmonic expansion. The coefficients of this 
expansion are functions of the dimensions of the bodies. The equilibrium conditions are 
studied by searching for the situations where the forces acting in the spacecraft have a 
zero resultant, assuming that only the gravity of both irregular bodies are present in the 
system. The method is applied in the double asteroid systems (3169) Ostro and (90) An-
tiope, which are synchronous systems. To verify the effects of the irregularities of the 
bodies in the solutions, calculations are also made assuming that the bodies are spherical.  

[View Full Paper] 
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AAS 17-752 

IMPULSIVE AERO-GRAVITY ASSISTED MANEUVERS IN VENUS 
AND MARS TO CHANGE THE INCLINATION OF A SPACECRAFT 

Jhonathan O. Murcia P.* and Antonio F. B. A. Prado† 

The impulsive or powered aero-gravity-assisted is an orbital maneuver that combines 
three basic components: a gravity-assisted with a passage by the atmosphere of the planet 
during the close approach and the application of an impulse during this passage. The 
mathematical model used to simulate the trajectories is the Restricted Three-Body Prob-
lem including aerodynamic forces. The present paper uses this type of maneuver consid-
ering atmospheric drag and lift forces. The lift is applied orthogonal to the initial orbital 
plane to generate an inclination change in the trajectory of the spacecraft, which are very 
expensive maneuvers. The lift to drag ratio selected goes up to 9.0, because there are ve-
hicles, like waveriders, designed to have these values. When the spacecraft is located at 
the periapsis the impulse is applied to increase or decrease the variation of energy given 
by the aero-gravity-assisted maneuver. The planets Venus and Mars are selected to be the 
secondary bodies for the maneuver, due to their atmospheric density and strategic loca-
tion to provide possible use for future missions in the solar system. Results of the numer-
ical simulations show the maximum changes in the inclination obtained by the maneuvers 
as a function of approach angle and direction of the impulse, lift to drag ratio and ballistic 
coefficient. In the case of Mars, inclination change can be larger than 13°, and for Venus 
higher than 21°. The energy and inclination variations are shown for several selected or-
bits. [View Full Paper] 
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AAS 17-764 

ON THE USE OF SOLAR RADIATION PRESSURE TO EJECT 
A SPACECRAFT ORBITING THE ASTEROID 65803 DIDYMOS 

(1996 GT) 

J. B. Silva Neto,* D. M. Sanchez† and A. F. B. A. Prado‡ 

Asteroids and comets have become the target of space missions. A major goal of future 
missions is to find solutions that minimize costs. Our study presents the use of solar radi-
ation pressure, by varying the area-to-mass ratio and/or the reflectivity coefficient of the 
spacecraft, with the goal to assist in the ejection of the spacecraft from an orbit around an 
asteroid, for a possible return phase to the Earth or to direct the spacecraft to a second 
target. The asteroid Didymos, which has a small natural moon (Didymoon), is chosen as 
the focus of the present study, because it is the target of the AIDA mission. The study 
showed the existence of small but important escape windows from the asteroid using the 
solar radiation pressure to eject the spacecraft from the system. The results also showed: 
survival regions between L4 and L5, with small escape regions nearby, a very large natu-
ral ejection zone 20 km away from the surface of Didymos, areas of survival near the sur-
face of Didymos caused by resonances and the identification of a chaotic region ranging 
from approximately 1.2 km to 20 km from the surface of Didymos. [View Full Paper] 
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AAS 17-769 

COMPARISON OF OPTIMIZERS FOR GROUND BASED 
AND SPACE BASED SENSORS* 

Bryan Little† and Carolin Frueh‡ 

Optimization based sensor tasking often requires the evaluation of a time dependent cost 
function. Once the cost function is defined, a fast, reliable evaluation of the optimization 
scheme is necessary. In this paper three different optimizers (Greedy, Weapon-Target 
Association, and Ant Colony Optimization) are compared in order to determine their per-
formance in generating observation strategies. The optimizers will be evaluated against 
both space based and ground based sensor scenarios. Performance will be compared 
based on the number of objects expected to be observed. Observation strategies for each 
sensor-optimizer pair will be analyzed. [View Full Paper] 
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AAS 17-772 

ORBIT PREDICTION UNCERTAINTY OF SPACE DEBRIS DUE 
TO DRAG MODEL ERRORS 

Christoph Bamann* and Urs Hugentobler† 

Orbit prediction uncertainty is a crucial product for many debris-related activities such as 
conjunction analyses and collision avoidance planning. Aerodynamic drag models com-
monly represent the largest source of uncertainty in low-Earth orbit (LEO). Not only er-
rors in atmospheric density, but also in object shape, attitude, and flow regime result in 
orbit prediction uncertainty through the drag model. The present work provides an uncer-
tainty analysis of all these components using state-of-the-art atmosphere and CAD object 
models. Our results give insight into the nature of the individual error models and their 
relative impact on orbit prediction uncertainty. It shall support modeling drag-induced 
process noise for typical LEO orbit prediction scenarios of space debris.  

[View Full Paper] 
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   ADVANCES IN THE ASTRONAUTICAL SCIENCES, ASTRODYNAMICS 2017 
   (2018) 
 (AAS/AIAA Astrodynamics Specialist Conference, August 20–24, 2017, 
  Stevenson, Washington, U.S.A.) 

AAS 17-550 Debris Cloud Containment Boundary Anomaly, Brian W. Hansen (Part I) 
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